精英家教网 > 高中数学 > 题目详情

【题目】如图,点为圆上一动点,过点分别作轴,轴的垂线,垂足分别为,连接延长至点,使得,点的轨迹记为曲线.

1)求曲线的方程;

2)若点分别位于轴与轴的正半轴上,直线与曲线相交于两点,且,试问在曲线上是否存在点,使得四边形为平行四边形,若存在,求出直线方程;若不存在,说明理由.

【答案】12)不存在;详见解析

【解析】

1)设,通过,即的中点,转化求解,点的轨迹的方程.

2)设直线的方程为,先根据,可得,①,再根据韦达定理,点在椭圆上可得,②,将①代入②可得,该方程无解,问题得以解决

1)设,则

由题意知,所以中点,

由中点坐标公式得,即

又点在圆上,故满足,得.

曲线的方程.

2)由题意知直线的斜率存在且不为零,设直线的方程为

因为,故,即①,

联立,消去得:

因为四边形为平行四边形,故

在椭圆上,故,整理得②,

将①代入②,得,该方程无解,故这样的直线不存在.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中国剩余定理又称孙子定理1852年,英国来华传教士伟烈亚力将《孙子算经》中物不知数问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为中国剩余定理中国剩余定理讲的是一个关于整除的问题,现有这样一个整除问题:将120192019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列,则此数列所有项中,中间项的值为(  )

A.992B.1022C.1007D.1037

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)试讨论的单调性;

2)若函数在定义域上有两个极值点,试问:是否存在实数,使得

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】端午节(每年农历五月初五),是中国传统节日,有吃粽子的习俗.某超市在端午节这一天,每售出kg粽子获利润元,未售出的粽子每kg亏损元.根据历史资料,得到销售情况与市场需求量的频率分布表,如下表所示.该超市为今年的端午节预购进了kg粽子.(单位:kg)表示今年的市场需求量,(单位:元)表示今年的利润.

市场需求量(kg

频率

0.1

0.2

0.3

0.25

0.15

(1)将表示为的函数;

(2)根据频率分布表估计今年利润不少于元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月AB两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中AB两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:

支付金额

支付方式

不大于2000

大于2000

仅使用A

27

3

仅使用B

24

1

(Ⅰ)估计该校学生中上个月AB两种支付方式都使用的人数;

(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;

(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于空间中的三条直线,有以下四个条件:①三条直线两两相交;②三条直线两两平行;③三条直线共点;④两直线相交,第三条平行于其中一条与另一条相交.其中使这三条直线共面的充分条件有______(填正确结论的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年,我国鲜切花产业得到了快速发展,相关部门制定了鲜切花产品行业等级标准,统一使用综合指标值进行衡量,如下表所示.某花卉生产基地准备购进一套新型的生产线,现进行设备试用,分别从新旧两条生产线加工的产品中选取30个样品进行等级评定,整理成如图所示的茎叶图.

综合指标

质量等级

三级

二级

一级

)根据茎叶图比较两条生产线加工的产品的综合指标值的平均值及分散程度(直接给出结论即可);

)若从等级为三级的样品中随机选取3个进行生产流程调查,其中来自新型生产线的样品个数为,求的分布列;

)根据该花卉生产基地的生产记录,原有生产线加工的产品的单件平均利润为4元,产品的销售率(某等级产品的销量与产量的比值)及产品售价如下表:

三级花

二级花

一级花

销售率

单件售价

12

16

20

预计该新型生产线加工的鲜切花单件产品的成本为10元,日产量3000.因为鲜切花产品的保鲜特点,未售出的产品统一按原售价的50%全部处理完.如果仅从单件产品利润的角度考虑,该生产基地是否需要引进该新型生产线?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知对数函数过定点(其中),函数(其中的导函数,为常数)

1)讨论的单调性;

2)若对恒成立,且)处的导数相等,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为实现国民经济新三步走的发展战略目标,国家加大了扶贫攻坚的力度.某地区在2015 年以前的年均脱贫率(脱离贫困的户数占当年贫困户总数的比)为2015年开始,全面实施精准扶贫政策后,扶贫效果明显提高,其中2019年度实施的扶贫项目,各项目参加户数占比(参加该项目户数占 2019 年贫困户总数的比)及该项目的脱贫率见下表:

实施项目

种植业

养殖业

工厂就业

服务业

参加用户比

脱贫率

那么年的年脱贫率是实施精准扶贫政策前的年均脱贫率的(

A.B.C.D.

查看答案和解析>>

同步练习册答案