精英家教网 > 高中数学 > 题目详情
精英家教网如图,四棱锥P-ABCD中,底面ABCD是平行四边形,P在平面ABCD上的射影为G,且G在AD上,且AG=
1
3
GD,BG⊥GC,GB=GC=2,E是BC的中点,四面体P-BCG的体积为
8
3

(Ⅰ)求异面直线GE与PC所成的角余弦值;
(Ⅱ)求点D到平面PBG的距离;
(Ⅲ)若F点是棱PC上一点,且DF⊥GC,求
PF
FC
的值.
分析:(1)先利用等体积法求出PG的长,在平面ABCD内,过C点作CH∥EG交AD于H,连接PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角,在△PCH中利用余弦定理求出此角即可;
(2)在平面ABCD内,过D作DK⊥BG,交BG延长线于K,则DK⊥平面PBG,DK的长就是点D到平面PBG的距离,在△DKG利用边角关系求出DK长;
(3)在平面ABCD内,过D作DM⊥GC,M为垂足,连接MF,先证明FM∥PG,然后利用三角形相似对应边成比例建立等量关系即可.
解答:精英家教网解:(I)由已知VP-BGC=
1
3
S△BCG•PG=
1
3
1
2
BG•GC•PG=
8
3

∴PG=4.
在平面ABCD内,过C点作CH∥EG交AD于H,连接PH,则∠PCH(或其补角)就是异面直线GE与PC所成的角.
在△PCH中,CH=
2
,PC=
20
,PH=
18

由余弦定理得,cos∠PCH=
10
10

∴异面直线GE与PC所成的角的余弦值为
10
10


(II)∵PG⊥平面ABCD,PG?平面PBG∴平面PBG⊥平面ABCD,
在平面ABCD内,过D作DK⊥BG,交BG延长线于K,则DK⊥平面PBG∴DK的长就是点D到平面PBG的距离.
BC=2
2
∴GD=
3
4
AD=
3
4
BC=
3
2
2

在△DKG,DK=DGsin45°=
3
2
,∴点D到平面PBG的距离为
3
2


(III)在平面ABCD内,过D作DM⊥GC,M为垂足,连接MF,
又因为DF⊥GC,
∴GC⊥平面MFD,∴GC⊥FM.
由平面PGC⊥平面ABCD,∴FM⊥平面ABCD∴FM∥PG;
由GM⊥MD得:GM=GD•cos45°=
3
2

PF
FC
=
GM
MC
=
3
2
1
2
=3
,∴由DF⊥GC可得
PF
FC
=3

3
3
x=
d
3
x2+3
,解得d=
3
x
3+x2
∈(0,
3
).
点评:本题主要考查四棱锥的有关知识,以及求异面直线所成角的问题,以及分析问题与解决问题的能力.简单几何体是立体几何解答题的主要载体,特别是棱柱和棱锥.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案