精英家教网 > 高中数学 > 题目详情

【题目】下列命题中正确的是

A. 若直线与平面平行,则与平面内的任意一条直线都没有公共点;

B. 若直线与平面平行,则与平面内的任意一条直线都平行;

C. 若直线上有无数个点不在平面 内,则;

D. 如果两条平行线中的一条与一个平面平行,那么另一条也与这个平面平行.

【答案】A

【解析】对于A,用反证法易知,直线l与平面α平行,则l与平面α内的任意一条直线都没有公共点,命题正确;

对于B,若直线l与平面α平行,则l与平面α内的任意一条直线无公共点,

所以l与平面α内的任一条直线有两种位置关系:平行或异面,B错误;

对于C,若直线与平面相交,则除了交点以外的无数个点都不在平面内,所以命题错误;

对于D,如果两条平行线中的一条与一个平面平行,那么另一条与这个平面平行或在平面内,所以命题错误.

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1求函数的单调递减区间;

2若关于的方程在区间上有两个不等的根,求实数的取值范围;

3若存在,当时,恒有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 .

(1)求函数在点点处的切线方程;

(2)当时,求函数的极值点和极值;

(3)当时, 恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某同学参加科普知识竞赛,需回答3个问题,竞赛规则规定:答对第一、二、三问题分别得100分、100分、200分,答错得零分,假设这名同学答对第一、二、三个问题的概率分别为0.8、0.7、0.6,且各题答对与否相互之间没有影响.

(1)求这名同学得300分的概率;

(2)求这名同学至少得300分的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形垂直于正方形垂直于平面.且

(1)证明:面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于空间直角坐标系中的一点,有下列说法:

①点到坐标原点的距离为

的中点坐标为

③点关于轴对称的点的坐标为

④点关于坐标原点对称的点的坐标为

⑤点关于坐标平面对称的点的坐标为.

其中正确的个数是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在遂宁市中央商务区的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、2只白色的乒乓球(其体积,质地完全相同),旁边立着一块小黑板写道:

摸球方法:从袋中随机摸出3个球,若摸得统一颜色的3个球,摊主送个摸球者10元钱;若摸得非同一颜色的3个球。摸球者付给摊主2元钱。

(1)摸出的3个球中至少有1个白球的概率是多少?

(2)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点,则

1)若直线lxy轴的正半轴分别交于AB两点,且OAB的面积为4,求直线l的方程;

2若直线l与原点距离为2,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为[-1,5],部分对应值如下表,的导函数的图象如图所示,下列关于的命题:

-1

0

4

5

1

2

2

1

①函数的极大值点为0,4;

②函数在[0,2]上是减函数;

③如果当时,的最大值是2,那么的最大值为4;

④当时,函数有4个零点.

其中正确命题的序号是__________

查看答案和解析>>

同步练习册答案