精英家教网 > 高中数学 > 题目详情

已知数列{an}的前n项和Sn=2n2+2n,数列{bn}的前n项和Tn=2-bn
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)设cn=数学公式,求证数列{cn}的前n和Rn<4;
(III)设cn=an+(-1)nlog2bn,求数列{cn}的前2n和R2n

解:(I)∵数列{an}的前n项和Sn=2n2+2n,
∴a1=S1=2+2=4,
an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,
当n=1时,4n=4=a1
∴an=4n.
∵数列{bn}的前n项和Tn=2-bn
∴当n=1时,T1=b1=2-b1,解得b1=1.
当n>1时,Tn=2-bn,Tn-1=2-bn-1
∴Tn-Tn-1=bn=bn-1-bn,∴2bn=bn-1
=
∴数列{bn}是以首项为1,公比为的等比数列,
,n∈N*
(II)∵=n
∴数列{cn}的前n和:
Rn=c1+c2+c3+…+cn
=1•(0+2×(1+3×(2+…+(n-1)•(n-2+n•(n-1,①
=1•(1+2×(2+3×(3+…+(n-1)•(n-1+n•(n,②
①-②,得=1++(2+(3+…+(n-1-n•(n
=-n•(n
=2--n•(n

( III)∵cn=an+(-1)nlog2bn
=4n+
=4n+(-1)n(1-n),
∴数列{cn}的前2n和
R2n=[4×1+(-1)1(1-1)]+[4×2+(-1)2(1-2)]+[4×3+(-1)3(1-3)]+…+[4×2n+(-1)2n(1-2n)]
=4(1+2+3+…+2n)+[0-1+2-3+…+(2n-2)-(2n-1)]
=4×-n
=8n2+3n.
∴R2n=8n2+3n.
分析:(I)由数列{an}的前n项和Sn=2n2+2n,知a1=S1=2+2=4,an=Sn-Sn-1=(2n2+2n)-[2(n-1)2+2(n-1)]=4n,由此能求出an.由数列{bn}的前n项和Tn=2-bn,知当n=1时,T1=b1=2-b1,解得b1=1.当n>1时,Tn=2-bn,Tn-1=2-bn-1,故Tn-Tn-1=bn=bn-1-bn,2bn=bn-1,由此能求出bn
(II)由=n,知数列{cn}的前n和:Rn=c1+c2+c3+…+cn=1•(0+2×(1+3×(2+…+(n-1)•(n-2+n•(n-1,由错位相减法能够证明
( III)由cn=an+(-1)nlog2bn=4n+=4n+(-1)n(1-n),能求出数列{cn}的前2n和.
点评:本题考查数列的通项公式的求法,考查数列前n项和公式的求法,解题时要认真审题,注意迭代法、错位相减法、分组求和法的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

19、已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
(1)求数列{an},{bn}的通项公式;
(2)求数列{anbn}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于(  )
A、16B、8C、4D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn=n2+n+1,那么它的通项公式为an=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

13、已知数列{an}的前n项和为Sn=3n+a,若{an}为等比数列,则实数a的值为
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn+1=kSn+2,又a1=2,a2=1.
(1)求k的值及通项公式an
(2)求Sn

查看答案和解析>>

同步练习册答案