分析 (1)把点代入求解,(2)化为f(-2),f(-1.9),讨论利用函数单调性求解判断,(3)alna-1=e2,两边取对数化为lna•(lgn-1)=2求解.
解答 解:(1)∵函数f(x)=ax-1(a>0且a≠1),函数y=f(x)的图象经过点P(3,9),
∴a2=9,a=3,
(2)f(lg$\frac{1}{100}$)=f(-2),
当a>1时,f(x)=ax-1,单调递增,
∴f(-2)<f(-1.9),
当0<a<1,f(x)=ax-1,单调递减,
f(-2)>f(-1.9)
所以,当a>1时,f(lg$\frac{1}{100}$)<f(-1.9),
当0<a<1,f(lg$\frac{1}{100}$)>f(-1.9).
(3)f(lna)=e2,
∴alna-1=e2,
∴lna•(lna-1)=2,
即lna=2,或lna=-1,
a=e2或a=$\frac{1}{e}$.
点评 本题考查了指数函数,对数函数的单调性,对数的运算,属于容易题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | (0,2$\sqrt{2}$) | B. | (0,4$\sqrt{2}$) | C. | (0,4) | D. | (2$\sqrt{2}$,4$\sqrt{2}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com