精英家教网 > 高中数学 > 题目详情
(2012•绍兴一模)如图,在直角三角形OAB中,P,Q是斜边AB的两个三等分点,已知|
OP
|=sinα
,且|
OQ
|
=cosα(0<α<
π
2
)

(1)若2sinα+cosα=
11
5
,求tanα的值;
(2)试判断|
AB
|
是否为定值,并说明理由;
(3)求△OPQ的面积S的最大值.
分析:(1)将sin2α+cos2α=1和已知条件联立,转化成一元二次方程,解方程求出sinα和cosα,即可求出tanα的值;
(2)根据sin2α+cos2α=1以及|
OP
|=
OA
+
1
3
AB
OQ
=
OB
-
1
3
AB
将其化简即可得出结论;
(3)作OC⊥AB于C,列出三角形的面积,然后根据均值不等式得出答案.
解答:解:(1)
2sinα+cosα=
11
5
sin2α+cos2α=1
,消去cosα得5sin2α-
44
5
sinα+
96
25
=0
,…(2分),即(5sinα-4)(sinα-
24
25
)=0
sinα=
4
5
cosα=
3
5
,或
sinα=
24
25
cosα=
7
25
tanα=
4
3
24
7
.…(5分)
(2)1=sin2α+cos2α=|
OP
|2+|
OQ
|2=(
OA
+
1
3
AB
)2+(
OB
-
1
3
AB
)2
=
OA
2
+
OB
2
+
2
9
AB
2
+
2
3
AB
•(
OA
-
OB
)=
AB
2
(1+
2
9
-
2
3
)=
5
9
AB
2

所以,|
AB
|=
3
5
5
为为定值.…(6分)
(3)作OC⊥AB于C,则△OPQ的面积为S=
1
2
|PQ||OC|=
1
6
|AB||OC|=
1
6
ab≤
1
6
a2+b2
2
=
3
20
(当a=b时取等号)…(4分)
点评:此题考查了同角三角函数的基本关系以及三角函数与向量的结合问题,综合性较强,有一定难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•绍兴一模)定义运算a*b=
a (a≤b)
b (a>b)
,例如,1*2=1,则函数f(x)=x2*(1-|x|)的最大值为
3-
5
2
3-
5
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)已知sin(α-
π
6
)=
1
3
,则cos(2α+
3
)
的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)等差数列{an}中,a1+a2+…+a10=65,a11+a12+…+a20=165,则a1=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)已知命题p:log2(|x|-3)<0,q:6x2-5x+1>0,则p是q的(  )条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•绍兴一模)设
a
b
c
是三个非零向量,且
a
b
不共线,若关于x的方程
a
x2+
b
x+
c
=
0
的两个根为x1,x2,则(  )

查看答案和解析>>

同步练习册答案