精英家教网 > 高中数学 > 题目详情

【题目】已知某种药物在血液中以每小时的比例衰减,现给某病人静脉注射了该药物2500mg,设经过x个小时后,药物在病人血液中的量为ymg

x的关系式为______

当该药物在病人血液中的量保持在1500mg以上,才有疗效;而低于500mg,病人就有危险,要使病人没有危险,再次注射该药物的时间不能超过______小时精确到

参考数据:

【答案】

【解析】

利用指数函数模型求得函数yx的关系式;

根据题意利用指数函数的单调性列不等式求得再次注射该药物的时间不能超过的时间.

由题意知,该种药物在血液中以每小时的比例衰减,

给某病人注射了该药物2500mg,经过x个小时后,

药物在病人血液中的量为

yx的关系式为

当该药物在病人血液中的量保持在1500mg以上,才有疗效;而低于500mg,病人就有危险,

是单调减函数,

所以要使病人没有危险,再次注射该药物的时间不能超过小时.

故答案为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某宾馆有间标准相同的客房,客房的定价将影响入住率.经调查分析,得出每间客房的定价与每天的入住率的大致关系如下表:

每间客房的定价

220元

200元

180元

160元

每天的入住率

对于每间客房,若有客住,则成本为80元;若空闲,则成本为40元.要使此宾馆每天的住房利润最高,则每间客房的定价大致应为( )

A. 220元 B. 200元 C. 180元 D. 160元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(12分)

(1)若函数上为增函数,求实数的取值范围;

(2)当时,求上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的件产品作为样本,称出它们的重量(单位:克),重量的分组区间为,…,,由此得到样本的频率分布方图,如图所示.

(1)在上述抽取的件产品中任取件,设为取到重量超过克的产品件数,求的概率;

(2)从上述件产品中任取件,设为取到重量超过克的产品件数,求的分布列与期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E: 的右焦点为F(3,0),过点F的直线交椭圆E于A、B两点.若AB的中点坐标为(1,﹣1),则E的方程为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国际奥委会于2017年9月15日在秘鲁利马召开130次会议决定2024年第33届奥运会举办地,目前德国汉堡,美国波士顿等申办城市因市民担心赛事费用超支而相继退出,某机构为调查我国公民对申办奥运会的态度,选了100位居民调查结果统计如下:

支持

不支持

合计

年龄不大于50岁

_______

_______

80

年龄大于50岁

10

_______

_______

合计

_______

70

100

(1)根据已知数据,把表格填写完整;

(2)是否有95%的把握认为年龄与支持申办奥运有关?

附表:

0.100

0.050

0.025

0.010

2.706

3.814

5.024

6.635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)= +lnx在[1,+∞)上为增函数,且θ∈(0,π),f(x)=mx﹣ ﹣lnx(m∈R). (Ⅰ)求θ的值;
(Ⅱ)若f(x)﹣g(x)在[1,+∞)上为单调函数,求m的取值范围;
(Ⅲ)设h(x)= ,若在[1,e]上至少存在一个x0 , 使得f(x0)﹣g(x0)>h(x0)成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数 的单调区间;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

(Ⅲ)求证: 是自然对数的底数).

查看答案和解析>>

同步练习册答案