精英家教网 > 高中数学 > 题目详情
19.已知2sinθ-cosθ=1,3cosθ-2sinθ=a,记数a形成的集合为A,若x∈A,y∈A,则以点P(x,y)为顶点的平面图形可以是.
A.正方形B.五边形C.三角形D.线段

分析 由已知及同角的三角函数基本关系式的应用可解得sinθ,cosθ的值,即可解得集合A,在坐标系中即可得解.

解答 解:由2sinθ-cosθ=1及sin2θ+cos2θ=1,
可以解得sinθ=0,cosθ=-1或sinθ=$\frac{4}{5}$,cos=$\frac{3}{5}$,
从而可以知道a=-3或$\frac{1}{5}$,所以A={-3,$\frac{1}{5}$},
因为θ属于A,y属于A,所以P点的坐标可以是(-3,-3)或($\frac{1}{5}$,$\frac{1}{5}$)或(-3,$\frac{1}{5}$)或($\frac{1}{5}$,-3)四个点,
将这些坐标在直角坐标系中表示出来即可发现,这是一个正方形.
故选:A.

点评 本题主要考查了同角的三角函数基本关系式的应用,考查了集合的相关知识,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设定义域为R的函数f(x)满足$f(x+1)=\frac{1}{2}+\sqrt{f(x)-{{[f(x)]}^2}}$,且$f(-1)=\frac{1}{2}$,则f(2016)的值为(  )
A.$\frac{1}{2}$B.-1C.1D.2016

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知cosθ=-$\frac{3}{5}$,且$\frac{π}{2}$<θ<π,则cos($\frac{π}{6}$-θ)=$\frac{4-3\sqrt{3}}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,?ABCD中,E、F分别是BC、DC的中点,BF与DE交于点G,设$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow{b}$.
(1)用$\overrightarrow{a}$,$\overrightarrow{b}$表示$\overrightarrow{DE}$;
(2)试用向量方法证明:A、G、C三点共线.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知sinα-cosα=$\frac{3}{5}$,则sin2α的值为$\frac{16}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.求下列函数的反函数.
(1)y=$\frac{x-2}{x-1}$.
(2)y=$\sqrt{x}$+1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.等比数列{an}中.若a1+a2=$\frac{1}{3}$,a3+a4=1,则a7+a8+a9+a10=36.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.求点A(-2,1)关于直线2x+y-1=0的对称点A′的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=$\frac{{9}^{x}}{{9}^{x}+3}$.
(1)求f(x)+f(1-x)的值;
(2)求f($\frac{1}{2015}$)+f($\frac{2}{2015}$)+f($\frac{3}{2015}$)+…+f($\frac{2014}{2015}$)的值.

查看答案和解析>>

同步练习册答案