精英家教网 > 高中数学 > 题目详情

【题目】已知函数处的切线方程是.

1)求ab的值;

2)若对任意,都有恒成立,求实数m的取值范围.

【答案】12

【解析】

1)由切线方程求出,由函数解析式求出函数在处的函数值及导数值,即可求出的值;(2)将问题转化为对任意,都有恒成立,构造函数,利用函数的单调性求解.

1)由函数处的切线方程是可知,

因为

所以

所以

2)由(1)知

若对任意,都有恒成立,

则对任意,都有恒成立,

化简得

,所以对任意,都有

易知

时,,所以上是增函数,

所以,即当时,

所以上是增函数,

所以,符合题意.

时,易知上是增函数,

所以

,则,所以上是增函数,

所以,即当时,

所以上是增函数,

所以,符合题意.

,令,则

因为,所以,于是有

因为,所以

,所以

上是减函数,

所以当时,

,所以上是减函数,

所以当时,,与矛盾,不符合题意.

故实数的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在日常生活中,石子是我们经常见到的材料,比如在各种建筑工地或者建材市场上常常能看到堆积如山的石子,它的主要成分是碳酸钙.某雕刻师计划在底面边长为2m、高为4m的正四棱柱形的石料中,雕出一个四棱锥和球M的组合体,其中O为正四棱柱的中心,当球的半径r取最大值时,该雕刻师需去除的石料约重___________kg.(最后结果保留整数,其中,石料的密度,质量

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱ABCA1B1C1中,侧面ABB1A1是边长为2的菱形,且CACB1.

1)证明:面CBA1⊥面CB1A

2)若∠BAA160°,A1CBCBA1,求点C到平面A1BC1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,摩天轮的半径,它的最低点距地面的高度忽略不计.地上有一长度为的景观带,它与摩天轮在同一竖直平面内,且.从最低点处逆时针方向转动到最高点处,记.

1)当时,求点距地面的高度

2)试确定的值,使得取得最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求曲线在点处的切线方程;

(2)求函数的零点和极值;

(3)若对任意,都有成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知三棱锥的棱长均为6,其内有个小球,球与三棱锥的四个面都相切,球与三棱锥的三个面和球都相切,如此类推,,球与三棱锥的三个面和球都相切(,且),则球的体积等于__________,球的表面积等于__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(多选题)下列说法正确的是(

A.在回归直线方程中,当解释变量每增加1个单位时,预报变量平均减少2.3个单位

B.两个具有线性相关关系的变量,当相关指数的值越接近于0,则这两个变量的相关性就越强

C.若两个变量的相关指数,则说明预报变量的差异有88%是由解释变量引起的

D.在回归直线方程中,相对于样本点的残差为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的最大值为,且曲线x0处的切线与直线平行(其中e为自然对数的底数).

1)求实数ab的值;

2)如果,且,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】东京夏季奥运会推迟至2021723日至88日举行,此次奥运会将设置4 100米男女混泳接力赛这一新的比赛项目,比赛的规则是:每个参赛国家派出22女共计4名运动员参加比赛,按照仰泳蛙泳蝶泳自由泳的接力顺序,每种泳姿100米且由1名运动员完成,且每名运动员都要出场.若中国队确定了备战该项目的4名运动员名单,其中女运动员甲只能承担仰泳或者自由泳,男运动员乙只能承担蝶泳或者蛙泳,剩下2名运动员四种泳姿都可以承担,则中国队参赛的安排共有(

A.144B.8C.24D.12

查看答案和解析>>

同步练习册答案