精英家教网 > 高中数学 > 题目详情
4.若直线a∥直线b,直线b∥平面α,则a与α的位置关系是a∥α或a?α.

分析 利用线面平行的判定定理和性质定理即可判断出位置关系.

解答 解:∵直线a∥直线b,直线b∥平面α,
∴a与b可以确定平面β.
若β∥α,则a∥β;
若α∩β=l,∵b∥平面α,∴b∥l.取l为a,则a?α.
故答案为:a∥α或a?α.

点评 本题考查直线与平面的位置关系的判断,是基础题,熟练掌握线面平行的判定定理和性质定理是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

14.若a2+b2=1,x2+y2=4,则ax+by的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$的离心率为$\frac{1}{2}$,则双曲线$\frac{y^2}{a^2}-\frac{x^2}{b^2}=1$的渐近线方程为(  )
A.$y=±\frac{{\sqrt{3}}}{2}x$B.$y=±\frac{{2\sqrt{3}}}{3}x$C.$y=±\frac{1}{2}x$D.y=±x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线的渐近线方程为y=±$\frac{1}{2}$x,且经过点(4,1),则双曲线的标准方程为(  )
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{12}$=1B.$\frac{{y}^{2}}{3}$-$\frac{{x}^{2}}{12}$=1C.$\frac{{x}^{2}}{12}$-$\frac{{y}^{2}}{3}$=1D.$\frac{{y}^{2}}{12}$-$\frac{{x}^{2}}{3}$=1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x-1|,x∈R.
(Ⅰ)求不等式|f(x)-2|≤5的解集;
(Ⅱ)若g(x)=$\frac{1}{f(x)+f(x-1)+m}$的定义域为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.过椭圆$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的右顶点、右焦点的一个圆的圆心(4,y0)在该椭圆上,则y0=$±\frac{12}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设函数y=log2(ax2-2x+2)定义域为A、值域为B.
(1)若A=R,求实数a的取值范围:
(2)若B=R,求实数a的取值范围;
(3)若log2(ax2-2x+2)>2在x∈[1,2]上恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知A=B=R,x∈A,y∈B,f:x→y=ax+b是从A到B的映射,若3和7的原象分别是5和9,则6在f下的象是(  )
A..3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\left\{{\begin{array}{l}{x+1,x≤0}\\{{{log}_2}x,x>0}\end{array}}$,则函数y=f(f(x))-1的所有零点构成的集合为{-1,1,4}.

查看答案和解析>>

同步练习册答案