精英家教网 > 高中数学 > 题目详情

【题目】已知函数满足,对于任意都有,且,另

1)求函数的表达式;

2)当时,求函数的单调区间;

3)当时,判断函数在区间上的零点个数,并给予证明.

【答案】1

2)当时,函数单调递增区间为,单调递减区间为

3)当时,函数在区间上只有一个零点,证明见解析.

【解析】

1)先由,得,由,得出对称轴方程为,于是得出,再由得出不等式对任意恒成立,于是得出,从而解出的值,进而得出函数的解析式;

2)先将函数表示成分段函数的形式,考查对称轴与相应定义域的位置关系,结合二次函数的性质得出函数的单调区间;

3)利用(2)中函数的单调性,结合单调性与零点存在定理得出函数的零点个数.

1

对于任意都有,

函数的对称轴为,即,得.

,即对于任意都成立,

,又

2.

时,函数的对称轴为

,则,函数上单调递增;

时,函数的对称轴为

则函数上单调递增,在上单调递减.

综上所述,当时,函数单调递增区间为,单调递减区间为

3)当时,由(2)知函数在区间上单调递增,

,故函数在区间上只有一个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点是抛物线的焦点,直线相交于不同的两点

1)求的方程;

2)若直线经过点,求的面积的最小值(为坐标原点)

3)已知点,直线经过点为线段的中点,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,求曲线在点处的切线方程;

(Ⅱ)讨论函数的单调性;

(Ⅲ)对于任意,都有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于数列,定义

(1),是否存在,使得?请说明理由;

(2) ,求数列的通项公式;

(3) ,求证:“为等差数列”的充要条件是“的前4项为等差数列为等差数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥,底面为菱形, 平面EF分别是的中点.

1)求证:

2)若直线与平面所成角的余弦值为,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为,总重量为.其中一个螺帽的三视图如下图所示(单位:毫米).

1)这堆螺帽至少有多少个;

2)对上述螺帽作防腐处理,每平方米需要耗材0.11千克,共需要多少千克防腐材料(结果精确到0.01

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“团购”已经渗透到我们每个人的生活,这离不开快递行业的发展,下表是2013-2017年全国快递业务量(x亿件:精确到0.1)及其增长速度(y%)的数据

1)试计算2012年的快递业务量;

2)分别将2013年,2014年,…,2017年记成年的序号t12345;现已知yt具有线性相关关系,试建立y关于t的回归直线方程

3)根据(2)问中所建立的回归直线方程,估算2019年的快递业务量

附:回归直线的斜率和截距地最小二乘法估计公式分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆方程为

1)设椭圆的左右焦点分别为,点在椭圆上运动,求的值;

2)设直线和圆相切,和椭圆交于两点,为原点,线段分别和圆交于两点,设的面积分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校为了了解高一年级学生学习数学的状态,从期中考试成绩中随机抽取50名学生的数学成绩,按成绩分组:第1,第2,第3,第4,第5,得到的频率分布直方图如图所示.

(1)由频率分布直方图,估计这50名学生数学成绩的中位数和平均数(保留到0.01);

(2)该校高一年级共有1000名学生,若本次考试成绩90分以上(含90分)为优秀等次,则根据频率分布直方图估计该校高一学生数学成绩达到优秀等次的人数.

查看答案和解析>>

同步练习册答案