精英家教网 > 高中数学 > 题目详情

【题目】设各项均为正数的数列的前项和为,满足,且,公比大于1的等比数列满足 .

(1)求证数列是等差数列,并求其通项公式;

(2)若,求数列的前项和

(3)在(2)的条件下,若对一切正整数恒成立,求实数的取值

【答案】(1);(2);(3).

【解析】试题分析:(1)由的关系可求出利用等差数列定义即可证明;(2)根据通项是等差数列与等比数列相乘的特点,用错位相减法求和;(3)可证明数列是单调递减数列,故可转化为恒成立利用二次不等式恒成立的方法即可求解.

试题解析:(1)当时,

,所以 .

因为当时, 是公差的等差数列,

是首项,公差的等差数列,

所以数列的通项公式为.

(2)由题意得

则前项和

相减可得

化简可得前项和

(3)对一切正整数恒成立,

可得数列单调递减,即有最大值为

,解得.

即实数的取值范围为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】 已知函数(a为常数).

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的顶点 边上的中线所在直线方程为 边上的高所在直线方程为. 

(1)求点的坐标;

(2)求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,以原点为极点, 轴正半轴为极轴建立坐标系,直线的极坐标方程为,曲线的参数方程为,( 为参数).

(Ⅰ)求直线的直角坐标方程和曲线的普通方程;

(Ⅱ)曲线轴于两点,且点 为直线上的动点,求周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂某种产品的年固定成本为250万元,每生产千件,需另投入成本为,当年产量不足80千件时, (万元).当年产量不小于80千件时, (万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.

(Ⅰ)写出年利润(万元)关于年产量(千件)的函数解析式;

(Ⅱ)年产量为多少千件时,该厂在这一商品的生产中所获利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆的左焦点为,直线与椭圆相交于点,当的周长最大时, 的面积是(  )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共个,生产一个卫兵需分钟,生产一个骑兵需分钟,生产一个伞兵需分钟,已知总生产时间不超过小时,若生产一个卫兵可获利润元,生产一个骑兵可获利润元,生产一个伞兵可获利润元.

(1)用每天生产的卫兵个数与骑兵个数表示每天的利润(元);

(2)怎么分配生产任务才能使每天的利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图, 在△中, 点边上, .

(Ⅰ)求

(Ⅱ)若△的面积是, 求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用神七宇宙飞船进行新产品搭载实验,计划搭载新产品,该所要根据该产品的研制成本、产品重量、搭载实验费用、和预计产生收益来决定具体安排.通过调查,有关数据如下表:


产品A()

产品B()


研制成本、搭载费用之和(万元)

20

30

计划最大资金额300万元

产品重量(千克)

10

5

最大搭载重量110千克

预计收益(万元)

80

60


如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

同步练习册答案