A. | ②、③ | B. | ③、④ | C. | ①、④ | D. | ①、② |
分析 ①,逆命题:三个内角均为60°的三角形是等边三角形;
②,原命题为真,其逆否命题与原命题同真假;
③,“全等三角形的面积相等”的否命题:不全等三角形的不面积相等;
④,“若ab=0,则a=0或b=0”.
解答 解:对于①“等边三角形的三个内角均为60°”的逆命题:三个内角均为60°的三角形是等边三角形,故为真命题;
对于②,“若k>0,则方程x2+2x-k=0的△=4+4k>0,有实根”,∴原命题为真,其逆否命题与原命题同真假,故为真命题;
对于③,“全等三角形的面积相等”的否命题:不全等三角形的不面积相等,故为假命题;
对于④,“若ab≠0,则a≠0”的否命题:“若ab=0,则a=0”,故为假命题.
故选:D
点评 本题考查了命题的四种形式的转换,及真假判定,属于基础题.
科目:高中数学 来源: 题型:选择题
A. | e2e+3f(e)<e2ππ3f(π) | B. | e2e+3f(π)>e2ππ3f(e) | C. | e2e+3f(π)<e2ππ3f(e) | D. | e2e+3f(e)>e2ππ3f(π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | -1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{1}{2}$ | B. | 1 | C. | 2 | D. | -1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{y^2}{25}+\frac{x^2}{16}=1$ | B. | $\frac{x^2}{25}+\frac{y^2}{16}=1$ | C. | $\frac{x^2}{25}+\frac{y^2}{9}=1$ | D. | $\frac{x^2}{16}+\frac{y^2}{9}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | a>b>c | B. | c>a>b | C. | b>a>c | D. | c>b>a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com