精英家教网 > 高中数学 > 题目详情
4.下列四个命题中:
①“等边三角形的三个内角均为60°”的逆命题;
②“若k>0,则方程x2+2x-k=0有实根”的逆否命题;
③“全等三角形的面积相等”的否命题;
④“若ab≠0,则a≠0”的否命题.
其中真命题的序号是(  )
A.②、③B.③、④C.①、④D.①、②

分析 ①,逆命题:三个内角均为60°的三角形是等边三角形;
②,原命题为真,其逆否命题与原命题同真假;
③,“全等三角形的面积相等”的否命题:不全等三角形的不面积相等;
④,“若ab=0,则a=0或b=0”.

解答 解:对于①“等边三角形的三个内角均为60°”的逆命题:三个内角均为60°的三角形是等边三角形,故为真命题;
对于②,“若k>0,则方程x2+2x-k=0的△=4+4k>0,有实根”,∴原命题为真,其逆否命题与原命题同真假,故为真命题;
对于③,“全等三角形的面积相等”的否命题:不全等三角形的不面积相等,故为假命题;
对于④,“若ab≠0,则a≠0”的否命题:“若ab=0,则a=0”,故为假命题.
故选:D

点评 本题考查了命题的四种形式的转换,及真假判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数f(x)=(m2-m-1)xm是幂函数,且在x∈(0,+∞)上为增函数,则实数m的值是(  )
A.-1B.2C.3D.-1或2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知定义在(0,+∞)的函数f(x),其导函数为f′(x),满足:f(x)>0且$\frac{2x+3}{x}>-\frac{{{f^'}(x)}}{f(x)}$总成立,则下列不等式成立的是(  )
A.e2e+3f(e)<eπ3f(π)B.e2e+3f(π)>eπ3f(e)C.e2e+3f(π)<eπ3f(e)D.e2e+3f(e)>eπ3f(π)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)的定义域为R+,且对于任何正实数x、y都有f(xy)=f(x)+f(y),若f(8)=6,则f($\sqrt{2}$)=(  )
A.1B.2C.-1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.直线的方程为$x-\sqrt{3}y+2016=0$,则直线的倾斜角为(  )
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知曲线 f(x)=ax2-2在横坐标为1的点 p处切线的倾斜角为$\frac{π}{4}$,则a=(  )
A.$\frac{1}{2}$B.1C.2D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.椭圆C的中心在原点,焦点F1,F2在x轴上,椭圆上的点到左焦点F1的距离的最大值为8,过F1的直线交椭圆C于A,B两点,且△ABF2的周长为20,则椭圆C的方程为(  )
A.$\frac{y^2}{25}+\frac{x^2}{16}=1$B.$\frac{x^2}{25}+\frac{y^2}{16}=1$C.$\frac{x^2}{25}+\frac{y^2}{9}=1$D.$\frac{x^2}{16}+\frac{y^2}{9}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若定义域为R的函数f(x)满足:对任意两个不相等的实数x1,x2,都有$\frac{{{x_2}f({x_1})-{x_1}f({x_2})}}{{{x_1}-{x_2}}}<0$,记:a=4f(0.25),b=0.5f(2),c=0.2f(5),则(  )
A.a>b>cB.c>a>bC.b>a>cD.c>b>a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若关于x的方程x2+(m-3)x+m=0有两个不相等实数根,求m的取值范围.

查看答案和解析>>

同步练习册答案