精英家教网 > 高中数学 > 题目详情
18.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,有下列四个命题:①d<0;②S11>0;③S12<0;④S8>S5,其中正确命题序号是(  )
A.②③B.①④C.①③D.①②

分析 根据已知中Sn是等差数列{an}的前n项和,且S6>S7>S5,可得a7<0,a6+a7>0,进而a6>0,|a6|>|a7|,逐一分析四个结论的真假,可得答案.

解答 解:∵Sn是等差数列{an}的前n项和,且S6>S7>S5
∴a7<0,a6+a7>0,
∴a6>0,|a6|>|a7|,
∴①d<0;
②S11=11a6>0;
③S12=6(a6+a7)>0;
④S8=S5+(a6+a7+a8)=S5+3a7<S5
故正确的命题的序号是:①②,
故选:D

点评 本题考查的知识点是命题的真假判断与应用,等差数列的性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知点O在二面角α-AB-β的棱上,点P在α内,且∠POB=60°.若对于β内异于O的任意一点Q,都有∠POQ≥60°,则二面角α-AB-β的大小是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.关于x的不等式$\frac{{(m-2){x^2}+2(m-2)x-4}}{{{x^2}-x+2}}<0$对一切x∈R恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.计算:${∫}_{-2}^{2}({x}^{3}+\sqrt{4-{x}^{2}})dx$=2π.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.有下列命题:
①当λ∈R,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$时,λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$;
②当λ1,λ2,…,λn∈R,且λ12+…+λn=0时,λ1$\overrightarrow{a}$+λ2$\overrightarrow{a}$+…+λn$\overrightarrow{a}$=$\overrightarrow{0}$;
③当λ1,λ2,…λn∈R,且λ12+…+λn=0时,$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,…,$\overrightarrow{{a}_{n}}$是n个向量,且$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+…+$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$,则λ$\overrightarrow{{a}_{1}}$+λ$\overrightarrow{{a}_{2}}$+…+λ$\overrightarrow{{a}_{n}}$=$\overrightarrow{0}$.
其中真命题有①②.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.对任意实数x,若不等式x+|3x-2a|≥3恒成立,则实数a的取值范围是[$\frac{9}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知f(x)=$\frac{a•2^x+a-2}{2^x+1}$是定义在[-2,2]上的奇函数.
(1)求实数a的值,并求f(1)的值;
(2)证明:f(x)在定义域上为增函数;
(3)解不等式f(2x-1)<$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若线性方程组的增广矩阵为$(\begin{array}{l}{2}&{3}&{{c}_{1}}\\{3}&{2}&{{c}_{2}}\end{array})$,解为$\left\{\begin{array}{l}x=2\\ y=1\end{array}\right.$,则c1-c2=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.若函数f(x)=ex-ax在(1,+∞)上单调增,则实数a的最大值为e.

查看答案和解析>>

同步练习册答案