精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,曲线的参数方程为为参数),在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,点的极坐标为,直线的极坐标方程为

(1)求直线的直角坐标方程与曲线的普通方程;

(2)若是曲线上的动点,为线段的中点,求点到直线的距离的最大值.

【答案】(1),;(2).

【解析】

(1)利用极坐标与直角坐标互化公式即可求得直线的直角坐标方程,将曲线C的参数方程消参数即可求得曲线的普通方程,问题得解。

(2)求出点的直角坐标,再利用椭圆的参数方程表示点的坐标为,利用点到直线距离公式及两角差的正弦公式即可整理点P到直线的距离,问题得解。

(1)因为直线的极坐标方程为

即ρsinθ-ρcosθ+4=0.

由x=ρcosθ,y=ρsinθ,

可得直线的直角坐标方程为x-y-4=0.

将曲线C的参数方程消去参数

得曲线C的普通方程为

(2)设N(,sinα),α∈[0,2π).

点M的极坐标()化为直角坐标为(-2,2).

所以点P到直线的距离

所以当时,点M到直线的距离的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞赛。从参加竞赛的学生中,随机抽取40名学生,将其成绩分为六段,到如图所示的频率分布直方图.

1)求图中的值及样本的中位数与众数;

2)若从竞赛成绩在两个分数段的学生中随机选取两名学生,设这两名学生的竞赛成绩之差的绝对值不大于分为事件,求事件发生的概率.

3)为了激励同学们的学习热情,现评出一二三等奖,得分在内的为一等奖,得分在内的为二等奖, 得分在内的为三等奖.若将频率视为概率,现从考生中随机抽取三名,设为获得三等奖的人数,求的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知一次函数上的减函数,,且.

1)求

2)若上单调递减,求实数m的取值范围;

3)当时,有最大值1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)当时,求函数的单调区间;

(2)若函数的值域为,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某地某年月平均气温(华氏度):

月份

1

2

3

4

5

6

7

8

9

10

11

12

平均气温

21.4

26.0

36.0

48.8

59.1

68.6

73.0

71.9

64.7

53.5

39.8

27.7

以月份为x轴(月份),以平均气温为y.

1)用正弦曲线去拟合这些数据;

2)估计这个正弦曲线的周期T和振幅A

3)下面三个函数模型中,哪一个最适合这些数据?

;②;③.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知A(1,2),B(a,1),C(2,3),D(-1,b)(a,b∈R)是复平面上的四个点,且向量对应的复数分别为z1,z2.

(1)z1+z2=1+i,z1,z2;

(2)|z1+z2|=2,z1-z2为实数,a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某高科技公司研究开发了一种新产品,生产这种新产品的每天固定成木为30000元,每生产x件,需另投入成本为t元, ,每件产品售价为10000元.(该新产品在市场上供不应求可全部卖完.)

(1)写出每天利润y关于每天产量x的函数解析式;

(2)当每天产量为多少件时,该公司在这一新产品的生产中每天所获利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一半径为的水轮,水轮圆心距离水面2,已知水轮每分钟转动(按逆时针方向)3圈,当水轮上点从水中浮现时开始计时,即从图中点开始计算时间.

(1)当秒时点离水面的高度_________

(2)将点距离水面的高度(单位: )表示为时间(单位: )的函数,则此函数表达式为_______________ .

查看答案和解析>>

同步练习册答案