精英家教网 > 高中数学 > 题目详情
6.已知正方体ABCD-A′B′C′D′,记过点A与三条直线AB,AD,AA′所成角都相等的直线条数为m,过点A与三个平面AB′,AC,AD′所成角都相等的直线的条数为n,则下面结论正确的是(  )
A.m=1,n=1B.m=4,n=1C.m=3,n=4D.m=4,n=4

分析 由已知条件结合正方体的结构特征求解.

解答 解:正方体ABCD-A′B′C′D′,
过点A与三条直线AB,AD,AA′所成角都相等的直线有:AC′,
过A作BD′的平行线,过A作A′C的平行线、过A作B′D的平行线,共4条,故m=4;
过点A与三个平面AB′,AC,AD′所成角都相等的直线分两类:
第一类:通过点A位于三条棱之间的直线有一条体对角线AC1
第二类:在图形外部和每面所成角和另两个面所成角相等,有3条,合计4条,故n=4.
故选:D.

点评 本题考查满足条件的直线条数的求法,是中档题,解题时要认真审题,注意正方体的结构特征的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.某四面体的三视图如图所示,正视图与俯视图都是斜边长为2的等腰直角三角形,左视图是两直角边长为1的三角形,该四棱锥的表面积是(  )
A.$1+\sqrt{3}$B.$1+2\sqrt{2}$C.$2+\sqrt{3}$D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.定义在R上的函数y=f(x)是奇函数,且x≥0时,f(x)=ln(x2-2x+2),则x<0时,f(x)的解析式是(  )
A.f(x)=ln(-x2-2x+2)B.f(x)=ln(x2+2x+2)C.f(x)=-ln(-x2-2x+2)D.f(x)=-ln(x2+2x+2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.点P(2,0)关于直线x+y+1=0对称点Q的坐标为(  )
A.(-1,-3)B.(3,3)C.(-1,3)D.(4,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知曲线C的参数方程是$\left\{\begin{array}{l}{xcosθ=3}\\{y=4tanθ}\end{array}\right.$(θ为参数),则曲线C的离心率为$\frac{5}{3}$.若点P(x,y)在曲线C上运动,则x-$\frac{1}{2}$y的取值范围是[-$\sqrt{5}$,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图所示,二面角A-BC-D的大小为45°,P为平面ABC内一点,Q为平面BCD内一点,M为BC上一点,已知P在平面BCD内的射影恰好在线段MQ上,设PM=$\sqrt{2}$,∠CMQ=45°,直线PQ与平面BCD所成的角为30°,则PQ的长为(  )
A.$\frac{2}{3}\sqrt{6}$B.$\frac{3}{4}\sqrt{6}$C.$\frac{4}{3}\sqrt{2}$D.$\frac{3}{2}\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=x2-a|x-2|,其中a>0
(1)当a=1时,求函数f(x)的单调区间;
(2)当x∈[2,4],有f(x)>0恒成立,求a的范围;
(3)当x∈[0,4]时,若函数f(x)的最大、最小值分别为M(a)、N(a),求M(a)-N(a)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知点C(3,4),抛物线y2=8x的准线为L,设抛物线上任意一点P到直线L的距离为m,则m+|PC|的最小值为(  )
A.5B.$\sqrt{41}$C.$\sqrt{41}$-2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设等差数列{an}的首项a1=1,公差d=$\frac{1}{2}$,前n项和为Sn,若有两个自然数m、n,使得am、15、Sn成等差数列,lgam,lg9,1gSn也成等差数列,则m+n=14.

查看答案和解析>>

同步练习册答案