精英家教网 > 高中数学 > 题目详情

【题目】正方体的棱长为1分别为的中点.则( )

A.直线与直线垂直B.直线与平面平行

C.平面截正方体所得的截面面积为D.和点到平面的距离相等

【答案】BC

【解析】

利用向量法判断异面直线所成角;利用面面平行证明线面平行;作出正方体的截面为等腰梯形,求其面积即可;利用等体积法处理点到平面的距离.

对选项A:(方法一)以点为坐标原点,所在的直线分别为轴,建立空间直角坐标系,则.从而,从而,所以与直线不垂直,选项A错误;

(方法二)取的中点,连接,则为直线在平面内的射影,不垂直,从而也不垂直,选项A错误;

的中点为,连接,则,易证,从而,选项B正确;

对于选项C,连接,易知四边形为平面截正方体所得的截面四边形(如图所示),且,所以,而,从而选项C正确;

对于选项D:(方法一)由于,而,而,所以,即,点到平面的距离为点到平面的距离的二倍.从而D错误.

(方法二)假设点与点到平面的距离相等,即平面平分,则平面必过的中点,连接于点,易知不是的中点,故假设不成立,从而选项D错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,直线l

的单调增区间;

求证:对于任意,直线l都不是线的切线;

试确定曲线与直线l的交点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)证明:当时,恒成立;

(2)若函数上只有一个零点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】微信红包已经成为中国百姓欢度春节时非常喜爱的一项活动.小明收集班内20名同学今年春节期间抢到红包金额(元)如下(四舍五入取整数):

102 52 41 121 72

162 50 22 158 46

43 136 95 192 59

99 22 68 98 79

对这20个数据进行分组,各组的频数如下:

Ⅰ)写出mn的值,并回答这20名同学抢到的红包金额的中位数落在哪个组别;

C组红包金额的平均数与方差分别为E组红包金额的平均数与方差分别为,试分别比较的大小;(只需写出结论)

Ⅲ)从AE两组所有数据中任取2个,求这2个数据差的绝对值大于100的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中对一些特殊的几何体有特定的称谓,例如:将底面为直角三角形的直三棱柱称为堑堵.将一堑堵沿其一顶点与相对的棱刨开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中, ,则阳马的外接球的表面积是( )

[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/3/30/1913191114645504/1914064210190336/STEM/70d44ba6321c44a9bcc99e6010bf5643.png]

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】假设关于某设备的使用年限和所支出的维修费用(万元)有如下的统计资料:

使用年限

2

3

4

5

6

维修费用

2.2

3.8

5.5

6.5

7.0

若由资料知呈线性相关关系.

1)请画出上表数据的散点图;

2)请根据最小二乘法求出线性回归方程的回归系数

3)估计使用年限为10年时,维修费用是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 过点,且两个焦点的坐标分别为 .

(1)求的方程;

(2)若 上的三个不同的点, 为坐标原点,且,求证:四边形的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧棱底面 为棱中点.

I)求证: 平面

II)求证: 平面

III)在棱的上是否存在点,使得平面平面?如果存在,求此时的值;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=Acos(ωxφ)+B的部分图象如图所示,将函数g(x)的图象保持纵坐标不变,横坐标向右平移个单位长度后得到函数f(x)的图象.求:

(1)函数f(x)在上的值域;

(2)使f(x)≥2成立的x的取值范围.

查看答案和解析>>

同步练习册答案