精英家教网 > 高中数学 > 题目详情
在△ABC中,求证sin2A+sin2B+sin2C≤
9
4
考点:不等式的证明
专题:证明题,不等式的解法及应用,推理和证明
分析:利用降幂扩角公式,结合和差化积公式,即可得出结论.
解答: 证明:sin2A+sin2B+sin2C=
1-cos2A
2
+
1-cos2B
2
+
1-cos2C
2

=
3
2
-
1
2
[cos2A+cos2B+cos(2A+2B)]
=
3
2
-
1
2
[2cos(A+B)cos(A-B)+2cos2(A+B)-1]
=2-[cos2C-cosCcos(A-B)]
=2-[cos2C-cosCcos(A-B)+
1
4
cos2(A-B)-
1
4
cos2(A-B)]
=2+
1
4
cos2(A-B)-[cosC-
1
2
cos(A-B)]2
≤2+
1
4
cos2(A-B)=
9
4
(A=B=C时取等号).
点评:本题考查不等式的证明,考查学生分析解决问题的能力,有难度.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设a=log 
1
2
 
2
3
,b=log 
1
2
1
3
,c=(
1
2
0.3,则a,b,c的大小关系为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

四棱锥P-ABCD中,PB⊥底面ABCD,CD⊥PD.底面ABCD为直角梯形,AD∥BC,AB⊥BC,AB=AD=PB=3.点E在棱PA上,且PE=2EA.
(Ⅰ)求异面直线PA与CD所成的角;
(Ⅱ)求证:PC∥平面EBD;
(Ⅲ)求二面角A-BE-D的大小.(用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

5x+3+3 x2+1=8×3 x2+2×5x+2解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=e-x-ex(其中e为自然对数的底数),a,b,c∈R且满足a+b>0,b+c>0,c+a>0,则f(a)+f(b)+f(c)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线x2=4y的准线l与y轴交于点P,若l绕点P以每秒
π
12
弧度的角速度按逆时针方向旋转t1秒后,恰好与抛物线第一次相交于一点,再旋转t2秒后,恰好与抛物线第二次相相交于一点,则t2的值为(  )
A、6B、4C、3D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

(1+x+x2)(x-
1
x
6的展开式中的常数项为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
5i
(2-i)(2+i)
(i是虚数单位)的共轭复数为(  )
A、i
B、-i
C、
5
3
i
D、-
5
3
i

查看答案和解析>>

科目:高中数学 来源: 题型:

李红为班级购买笔记本作晚会上的奖品,回来时向生活委员刘磊交账时说:“共买了36本,有两种规格,单价分别为1.80元和2.60元,去时我领了100元,现在找回27.60元“刘磊算了一下说:“你一定搞错了“李红一想,发觉的确不对,因为他把自己口袋里原有的2元钱一起当作找回的钱款交给了刘磊,请你算一算两种笔记本各买了多少?想一想有没有可能找回27.60元,试用方程的知识给予解释.

查看答案和解析>>

同步练习册答案