精英家教网 > 高中数学 > 题目详情
在△ABC中,a=λ,b=
3
λ(λ>0),∠A=45°则满足此条件的三角形有(  )
A.0个B.1个C.2个D.无数个
∵△ABC中,a=λ,b=
3
λ(λ>0),∠A=45°,
∴由正弦定理
a
sinA
=
b
sinB
得:
λ
sin45°
=
3
λ
sinB

∴sinB=
3
2
2
=
6
2
>1,这不可能.
故满足此条件的三角形不存在.
故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

2002年在北京召开的国际数学家大会,会标是我国以古代数学家赵爽的弦图为基础设计的.弦图是由四个全等直角三角形与一个小正方形拼成的一个大正方形(如图).如果小正方形的面积为1,大正方形的面积为25,直角三角形中较小的锐角为,那么的值等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
求函数的最大值与最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知角θ的终边过点P(-12,5),
(1)求sinθ,cosθ,tanθ的值;
(2)求
sin(-θ)+cosθ
cos(
π
2
-θ)+sin(
π
2
+θ)
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f(x)=sin(2x+
π
3
)+
3
3
sin2x-
3
3
cos2x

(1)求f(x)的最小正周期及其图象的对称轴方程;
(2)将函数f(x)的图象向右平移
π
3
个单位长度,得到函数g(x)的图象,求g(x)在区间[-
π
6
π
3
]
上的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

△ABC中,若sinA=2sinBcosC,sin2A=sin2B+sin2C,试判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在△ABC中,若
cosA
a
=
cosB
b
=
sinC
c
,则△ABC是(  )
A.有一内角为30°的直角三角形
B.等腰直角三角形
C.有一内角为30°的等腰三角形
D.等边三角形

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知,tan(
π
4
+α)=3,计算:
(1)tanα
(2)
2sinαcosα+3cos2α
5cos2α-3sin2α

(3)sinα•cosα

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,两个圆形飞轮通过皮带传动,大飞轮O1的半径为2r(r为常数),小飞轮O2的半径为r,O1O2=4r.在大飞轮的边缘上有两个点A,B,满足∠BO1A=,在小飞轮的边缘上有点C.设大飞轮逆时针旋转,传动开始时,点B,C在水平直线O1O2上.

(1)求点A到达最高点时A,C间的距离;
(2)求点B,C在传动过程中高度差的最大值.

查看答案和解析>>

同步练习册答案