精英家教网 > 高中数学 > 题目详情
4.已知定义在R上的函数f(x)是偶函数,对x∈R,都有f(2+x)=f(2-x),当f(-3)=-2时,f(2015)的值为(  )
A.-2B.2C.-4D.4

分析 由f(x)是偶函数,且f(2+x)=f(2-x),可得f(x)是以4为周期的函数;利用f(-3)计算出f(2013)的值.

解答 解:∵f(x)是R上的偶函数,
∴f(-x)=f(x);
又对x∈R都有f(2+x)=f(2-x),
∴f(2+(x-2))=f(2-(x-2)),
f(x)=f(4-x);
∴f(-x)=f(4+x),
∴f(x)=f(4+x),
∴f(x)是以4为周期的函数;
当f(-3)=-2时,f(2015)=f(504×4-1)=f(-1)═f(1)=f(-3)=-2;
故选:A.

点评 本题利用函数的奇偶性与单调性考查了求函数值的问题,是易错题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.(1)已知a+a-1=5,求a2+a-2的值;
(2)计算:|($\frac{4}{9}$)${\;}^{-\frac{1}{2}}$-lg5|+$\sqrt{l{g}^{2}2-lg4+1}$-3${\;}^{1-lo{g}_{3}2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.小强从学校放学回家,先跑步后步行,如果y表示小强离学校的距离,x表示从学校出发后的时间,则下列图象中最有可能符合小强走法的是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.如图,在棱长为1的正方体ABCD-A1B1C1D1中,P,Q分别是线段CC1,BD上的点,满足PQ∥平面AC1D1,则PQ与平面BDD1B1所成角的范围是($\frac{π}{6}$,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若曲线$\frac{{x}^{2}}{4}$+$\frac{y|y|}{9}$=1和曲线kx+y-3=0有三个交点,则k的取值范围是(-$\frac{3\sqrt{2}}{2}$,-$\frac{3}{2}$)∪($\frac{3}{2}$,$\frac{3\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知两个非零平面向量$\overrightarrow a,\overrightarrow b$满足:对任意λ∈R恒有$|{\overrightarrow a-λ\overrightarrow b}|≥|{\overrightarrow a-\frac{1}{2}\overrightarrow b}|$,则:①若$|{\overrightarrow b}|=4$,则$\overrightarrow a•\overrightarrow b$=8;②若$\overrightarrow a,\overrightarrow b$的夹角为$\frac{π}{3}$,则$\frac{{|{2\overrightarrow a-t•\overrightarrow b}|}}{{|{\overrightarrow b}|}}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图所示是函数y=2sin(ωx+φ)(ω>0,|φ|<π)的图象的一部分,求
(1)ω,φ的值.
(2)函数图象的对称轴方程和对称中心的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图所示,已知空间四边形ABCD的边BC=AC,AD=BD,BE⊥CD于点E,AH⊥BE于点H,求证:AH⊥平面BCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知二次函数y=x2-2ax+3,x∈[-1,1],设最大值为g(a),最小值为h(a).
(1)求g(a).
(2)求h(a).
(3)设a∈[0,1],若对任意的g(a),h(a),不等式g(a)log2m+2h(a)≤0恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案