精英家教网 > 高中数学 > 题目详情

【题目】知函数,且函数处的切线平行于直线.

(1)求实数的值;

(2)若在上存在一点,使得成立.求实数的取值范围.

【答案】(1)(2).

【解析】

试题分析:(1)由导数几何意义得所以求导数列式得(2)本题不宜分离,因此作差构造函数,利用分类讨论法求函数最小值:由于,所以讨论与1,e的大小,分三种情况:当时,的最小值为,当时,的最小值为,当时,的最小值为,解对应不等式即得.

试题解析:(1)的定义域为,函数处的切线平行于直线..

(2)若在上存在一点,使得成立,构造函数上的最小值小于零.,

时,即时,上单调递减,所以的最小值为,由可得,;

时,即时,上单调递增,所以的最小值为,由可得;

时,即时,可得的最小值为,此时,不成立.综上所述:可得所求的范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若函数.

)求的单调区间和极值;

)证明:若存在零点,则在区间上仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,有一块矩形空地,要在这块空地上开辟一个内接四边形为绿地,使其四个顶点分别落在矩形的四条边上,已知AB=a(a>2),BC=2,且AE=AH=CF=CG,设AE=x,绿地面积为y.

(1)写出y关于x的函数关系式,并指出这个函数的定义域;

(2)当AE为何值时,绿地面积y最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,令,其中是函数的导函数.

(1)当时,求的极值;

(2)当时,若存在,使得恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司采用招考方式引进人才,规定必须在,三个测试中任意选取两个进行测试,若在这两个测试点都测试合格,则可参加面试,否则不被录用,已知考生在每测试个点试结果互不影响,若考生小李和小王起前来参加招考,小李在测试点测试合格的概率分别为,小王在上述三个测试点测试合格的概率都是.

(1)问小李选择哪两个测试点测试才能使得可以参加面试的可最大说明理由;

(2)假设小李选测试点进行测试,小王选择测试点进行测试,为两人在各测试点测试合格的测试点个数之和,机变的分布列及数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商店计划每天购进某商品若干件,商店每销售一件该商品可获利润60元,若供大于求,剩余商品全部退回,但每件商品亏损10元;若供不应求,则从外部调剂,此时每件调剂商品可获利40元.

(1)若商品一天购进该商品10件,求当天的利润(单位:元)关于当天需求量(单位:件,)的函数解析式;

(2)商店记录了50天该商品的日需求量(单位:件,),整理得下表:

若商店一天购进10件该商品,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润在区间内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两同学在高考前各做了5次立定跳远测试,测得甲的成绩如下(单位:米)2.202.302.302.402.30,若甲、乙两人的平均成绩相同,乙的成绩的方差是0.005,那么甲、乙两人成绩较稳定的是________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知圆心坐标为的圆轴及直线分别相切于两点,另一圆与圆外切,且与轴及直线分别相切于两点

1求圆和圆的方程;

2过点作直线的平行线,求直线被圆截得的弦的长度

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】扬州瘦西湖隧道长米,汽车通过隧道的速度为米/秒.根据安全和车流的需要,相邻两车之间的安全距离米;相邻两车之间的安全距离米(其中是常数).当时,,当时,

(1)求的值;

(2)一列汽车组成的车队匀速通过该隧道(第一辆汽车车身长为米,其余汽车车身长为米,每辆汽车速度均相同).记从第一辆汽车车头进入隧道至第汽车车尾离开隧道所用的时间为秒.

表示为的函数

要使车队通过隧道时间不超过秒,求汽车速度的范围.

查看答案和解析>>

同步练习册答案