精英家教网 > 高中数学 > 题目详情

【题目】已知函数是定义在区间上的奇函数,且若对于任意的

(1)判断并证明函数的单调性;

(2)解不等式

(3)若对于任意的 恒成立,求实数的取值范围.

【答案】(1)增函数(2)(3)

【解析】试题分析; 1)设 ,由已知可得,分,及两种情况可知 的大小,借助单调性的定义可得结论;
(2)利用函数单调性可得去掉不等式中的符号 ,转化为具体不等式,再考虑到函数定义域可得不等式组,解出即可;
(3)要使得对于任意的x∈[-1,1],a∈[-1,1]都有f(x)≤-2at+2恒成立,只需对任意的a∈[-1,1]时-2at+2≥f(x)max,整理后化为关于a的一次函数可得不等式组;

试题解析;(1)函数在区间上是增函数:

证明:由题意可知,对于任意的

可设,则,即

时,

∴函数在区间上是增函数;

时, ,∴函数在区间上是增函数;

综上:函数在区间上是增函数.

(2)由(1)知函数在区间上是增函数,

又由

,解得

∴不等式的解集为

∵函数在区间上是增函数,且

要使得对于任意的x∈[﹣1,1],a∈[﹣1,1]都有f(x)≤﹣2at+2恒成立,

只需对任意的a∈[﹣1,1]时,即﹣恒成立,

,此时可以看做的一次函数,且在a∈[﹣1,1]时y≥0恒成立,

因此只需要,解得

∴实数t的取值范围为:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在等差数列{an}中,a1=1,S5=-15.

(1) 求数列{an}的通项公式;

(2) 若数列{an}的前k项和Sk=-48,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C的极坐标方程为,直线的参数方程为.若直线与圆C相交于不同的两点P,Q.

(Ⅰ)写出圆C的直角坐标方程,并求圆心的坐标与半径;

(Ⅱ)若弦长|PQ|=4,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市为了制定合理的节电方案,供电局对居民用电情况进行了调查,通过抽样,获得了某年200户居民每户的月均用电量(单位:度),将数据按照分成9组,制成了如图所示的频率直方图.

(1)求直方图中的值并估计居民月均用电量的中位数;

(2)从样本里月均用电量不低于700度的用户中随机抽取4户,用表示月均用电量不低于800度的用户数,求随机变量的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(10分)设分别是先后抛掷一枚骰子得到的点数,用随机变量表示方程

实根的个数(重根按一个计).

)求方程有实根的概率;

)求的分布列和数学期望;

)求在先后两次出现的点数中有5的条件下,方程有实根的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:

(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;

(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?

(参考公式和计算结果:

(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两个正数ab,可按规则扩充为一个新数c,在abc三个数中取两个较大的数,按上述规则扩充得到一个新数,依次下去,将每扩充一次得到一个新数称为一次操作.

(1)若a=1,b=3,按上述规则操作三次,扩充所得的数是_____________

(2)若p>q>0,经过6次操作后扩充所得的数为mn为正整数),

mn的值分别为____________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙两支篮球队进行一局比赛,甲获胜的概率为0.6,若采用三局两胜制举行一次比赛,现采用随机模拟的方法估计乙获胜的概率.

先利用计算器或计算机生成09之间取整数值的随机数,用0,1,2,3,4,5表示甲获胜;6,7,8,9表示乙获胜,这样能体现甲获胜的概率为0.6.因为采用三局两胜制,所以每3个随机数作为一组.例如,产生30组随机数.

034 743 738 636 964 736 614 698 637 162 332 616 804 560 111 410 959 774 246 762 428 114 572 042 533 237 322 707 360 751

据此估计乙获胜的概率为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面αβ,在平面α内任取一条直线a,在β内总存在直线ba,则αβ的位置关系是____(填“平行”或“相交”).

查看答案和解析>>

同步练习册答案