精英家教网 > 高中数学 > 题目详情
17.函数f(x)=a+log2($\sqrt{{x}^{2}+4}$+x)为奇函数,则a的值为-1.

分析 利用奇函数的定义,建立方程,即可求出a的值.

解答 解:∵f(x)=a+log2($\sqrt{{x}^{2}+4}$+x)为奇函数,
∴a+log2($\sqrt{{x}^{2}+4}$+x)=-a-log2($\sqrt{{x}^{2}+4}$-x),
∴2a=-[log2($\sqrt{{x}^{2}+4}$+x)+log2($\sqrt{{x}^{2}+4}$-x)]=-2,
∴a=-1.
故答案为:-1.

点评 本题考查函数的奇偶性考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知△ABC的三个内角A,B,C的对边分别为a,b,c,且a=$\sqrt{3}$csinA-acosC.
(1)求角C;
(2)若c=2,△ABC的面积为$\sqrt{3}$,求a,b.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设数列{an}的前n项和为Sn 点(n,$\frac{{S}_{n}}{n}$),(n∈N*),均在函数y=3x-18的图象上.
(1)求数列{an}的通项公式.
(2)求当Sn取最小值时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在锐角△ABC中,内角A,B,C的对边分别为a,b,c,且sin(B-C)+cos(B+C)=0.
(1)求角C的大小;
(2)若c=$\sqrt{2}$,当sinA+cos($\frac{7π}{12}$-B)取得最大值时,求A,α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设各项均为正数的等差数列{an}的首项为1,其前n项和为Sn,且Sn=$\frac{({a}_{n}+1)^{2}}{4}$(n∈N*).
(1)求an
(2)设常数k满足k<$\frac{\sqrt{{S}_{m}}+2\sqrt{{S}_{n}}}{\sqrt{{S}_{m+n}}}$对一切的m,n∈N*,m<n恒成立,求证:k的最大值等于$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若等比数列{an}的各项均为正数,且a10a11+a9a12=2e5,则lna1+lna2+lna3+…+lna20=50.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在数列{an}中,a1=4,an+1=6an+2n+2(n∈N*).
(1)求证:数列{$\frac{{a}_{n}}{{2}^{n}}$+1}是等比数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.求函数f(k)=$\frac{\sqrt{{k}^{2}+2}}{{k}^{2}+6}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知数列{an}满足a1=1,an+1-an=2,等比数列{bn}满足b1=a1,b4=a4+1.
(1)求数列{an},{bn}的通项公式;
(2)设cn=an•bn,求数列{cn}的前n项和Sn

查看答案和解析>>

同步练习册答案