精英家教网 > 高中数学 > 题目详情

已知向量数学公式,向量数学公式
(1)若数学公式(O为坐标原点),求M点的轨迹方程;
(2)若数学公式,求数学公式的值.

解:(1)∵向量,向量
=(2+sinα,1+sinα),
∵O为坐标原点,
∴M点坐标是(2+sinα,1+sinα),
,∴x-2=y-1,即x-y-1=0,
∴M点的轨迹方程是x-y-1=0.
(2)∵向量,向量
∴2sinα+sinα=0,即sinα=0,

=
=0.
分析:(1)由向量,向量,知=(2+sinα,1+sinα),由此能求出M点的轨迹方程.
(2)由向量,向量,知sinα=0,由此利用诱导公式能求值.
点评:本题考查平面向量的综合题,解题时要认真审题,注意平面向量的坐标运算和诱导公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
u
=(x,y)与向量
v
=(y,2y-x)的对应关系用
v
=f(
u
)表示.
(1)证明对任意的向量
a
b
及常数m、n,恒有f(m
a
+n
b
)=mf(
a
)+nf(
b
)成立;
(2)设
a
=(1,1),
b
=(1,0),求向量f(
a
)与f(
b
)的坐标;
(3)求使f(
c
)=(p,q)(p、q为常数)的向量
c
的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量集合M={
a
|
a
=(1,2)+λ(3,4),λ∈R}
N={
a
|
a
=(-2,-2)+λ(4,5),λ∈R}
,则M∩N=(  )
A、{1,1}
B、{1,1,-2,-2}
C、{(-2,-2)}
D、∅

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,1),向量
n
与向量
m
的夹角为
4
,且
m
n
=-1

(1)求向量
n

(2)设向量
a
=(1,0),向量
b
=(cosx,2cos2(
π
3
-
x
2
))
,若
a
n
=0,记函数f(x)=
m
•(
n
+
b
)
,求此函数的单调递增区间和对称轴方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(m,-1),
b
=(sinx,cosx),f(x)=
a
b
且满足f(
π
2
)=1

(1)求函数y=f(x)的解析式;
(2)求函数y=f(x)的最大值及其对应的x值;
(3)若f(α)=
1
5
,求
sin2α-2sin2α
1-tanα
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
(1)已知函数f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定义域内是连续函数,数列{an}通项公式为an=
1
an
,则数列{an}的所有项之和为1.
(2)过点P(3,3)与曲线(x-2)2-
(y-1)2
4
=1有唯一公共点的直线有且只有两条.
(3)向量
a
=(x2,x+1)
b
=(1-x,t)
,若函数f(x)=
a
b
在区间[-1,1]上是增函数,则实数t的取值范围是(5,+∞);
(4)我们定义非空集合A的真子集的真子集为A的“孙集”,则集合{2,4,6,8,10}的“孙集”有26个.
其中正确的命题有
(1)(2)(4)
(1)(2)(4)
(填序号)

查看答案和解析>>

同步练习册答案