精英家教网 > 高中数学 > 题目详情
18.(1)化简$\frac{{{{sin}^2}(π+α)cos(π+α)}}{{tan(-α-2π)tan(π+α){{cos}^3}(-π-α)}}$
(2)已知sinα=-$\frac{4}{5}$,且α∈(-π,-$\frac{π}{2}$),求cosα+2tanα的值.

分析 根据同角三角函数关系式和万能公式化简后代入求值即可

解答 解:(1)$\frac{{{{sin}^2}(π+α)cos(π+α)}}{{tan(-α-2π)tan(π+α){{cos}^3}(-π-α)}}$
原式=$\frac{-si{n}^{2}α•cosα}{-tanα•tanα•(-co{s}^{3}α)}$=$\frac{-sinα•sinα•cosα}{\frac{sinα}{cosα}•\frac{sinα}{cosα}•co{s}^{3}α}$=-1
(2)已知sinα=-$\frac{4}{5}$,
那么:cosα=$±\sqrt{1-(-\frac{4}{5})^{2}}$=$±\frac{3}{5}$
∵α∈(-π,-$\frac{π}{2}$),
∴cosα=$-\frac{3}{5}$.
那么:tanα=$\frac{sinα}{cosα}=\frac{4}{3}$
则cosα+2tanα=$-\frac{3}{5}+2×\frac{4}{3}$=$\frac{31}{15}$.

点评 本题主要考察了同角三角函数关系式和万能公式的应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知奇函数f(x)=$\left\{\begin{array}{l}-{x^2}+2x(x>0)\\ 0,(x=0)\\{x^2}+mx(x<0)\end{array}$
(1)在给出的直角坐标系中画出y=f(x)的图象,并求实数m的值;
(2)若函数f(x)在区间[2a-1,a+1]上单调递增,试确定a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.过两点A(2,1)和B(3,m)直线的斜率为1,则实数m的值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=CC1,M、N分别是A1B、B1C1的中点.
(1)求证:MN⊥平面A1BC;
(2)求直线BC1和平面A1BC所成角的大小;
(3)求二面角A-BC-A1的平面的余弦值;
(4)求点B1到平面A1BC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知实数x,y满足约束条件$\left\{\begin{array}{l}x-y+4≥0\\ x+y-2≤0\\ y-2≥0\end{array}$,则2y•($\frac{1}{4}$)x的最小值是(  )
A.1B.2C.8D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.化3$\sqrt{3\sqrt{3\sqrt{3}}}$为分数指数幂结果是(  )
A.3${\;}^{\frac{7}{8}}$B.3${\;}^{\frac{15}{8}}$C.3${\;}^{\frac{7}{4}}$D.3${\;}^{\frac{17}{8}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图所示,在边长为1的正方形OABC内任取一点P,用A表示事件“点P恰好自由曲线$y=\sqrt{x}$与直线x=1及x轴所围成的曲边梯形内”,B表示事件“点P恰好取自阴影部分内”,则P(B|A)等于(  )
A.$\frac{1}{4}$B.$\frac{1}{5}$C.$\frac{1}{6}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.命题p:?x∈R,2x2-1>0,则该命题的否定是?x0∈R,有2x02-1≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数f(x)是定义在R上偶函数,且在区间(-∞,0)上单调递减,则不等式f(x-3)<f(4)的解集为(-1,7).

查看答案和解析>>

同步练习册答案