精英家教网 > 高中数学 > 题目详情
选做题:请考生从22、23、24题中任选一题作答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.
如图,已知C、F是以AB为直径的半圆O上的两点,且CF=CB,过C作CD⊥AF交AF的延长线与点D.
(1)证明:CD为圆O的切线;
(2)若AD=3,AB=4,求AC的长.

【答案】分析:(Ⅰ)利用平行线的判定和性质定理、切线得出判定定理即可证明;
(Ⅱ)利用相似三角形的性质定理即可求出.
解答:(Ⅰ)证明:∵CF=CB,∴∠CAF=∠CAB.
∵OA=OC,∴∠CAO=∠ACO,
∴∠CAF=∠ACO,∴AF∥OC.
∵CD⊥AF,∴CD⊥OC.
∴CD为圆O的切线.
(Ⅱ)解:连接BC,由(Ⅰ)知∠CAD=∠CAB.
又∠CDA=∠ACB=90°,∴△ADC∽△ACB.

∴AC2=AD•AB=12,∴
点评:熟练掌握平行线的判定和性质定理、切线得出判定定理、相似三角形的性质定理是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

选做题:请考生从22、23、24题中任选一题作答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.
如图,已知C、F是以AB为直径的半圆O上的两点,且CF=CB,过C作CD⊥AF交AF的延长线与点D.
(1)证明:CD为圆O的切线;
(2)若AD=3,AB=4,求AC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

本题有(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵M=
7-6
4-3
,向量
ξ 
=
6
5

(I)求矩阵M的特征值λ1、λ2和特征向量
ξ
1
ξ2

(II)求M6
ξ
的值.
(2)选修4-4:坐标系与参数方程
在平面直角坐标系xOy中,已知曲线C的参数方程为
x=2cosα
y=sinα
(α为参数)
.以直角坐标系原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为ρcos(θ-
π
4
)=2
2

(Ⅰ)求直线l的直角坐标方程;
(Ⅱ)点P为曲线C上的动点,求点P到直线l距离的最大值.
(3)选修4-5:不等式选讲
(Ⅰ)已知:a、b、c∈R+,求证:a2+b2+c2
1
3
(a+b+c)2
;    
(Ⅱ)某长方体从一个顶点出发的三条棱长之和等于3,求其对角线长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

选做题:请考生从22、23、24题中任选一题作答,并在答题卡上把所选题目的题号用2B铅笔涂黑.注意所做题目的题号必须与所涂的题号一致,在答题卡选答区域指定位置答题.如果多做,则按所做的第一题计分.
如图,已知C、F是以AB为直径的半圆O上的两点,且CF=CB,过C作CD⊥AF交AF的延长线与点D.
(1)证明:CD为圆O的切线;
(2)若AD=3,AB=4,求AC的长.

查看答案和解析>>

同步练习册答案