精英家教网 > 高中数学 > 题目详情
△ABC的边BC在平面α内,Aα,平面ABC与平面α所成的锐二面角为θ,AD⊥α,则下列结论中正确的是(    )

A.S△ABC=S△DBC·cosθ

B.S△DBC=S△ABC·cosθ

C.S△ABC=S△DBC·sinθ

D.S△DBC=S△ABC·sinθ

解析:在△ABC内作AE⊥BC于点E,连结DE,则DE⊥BC,故∠AED即为平面ABC与平面α所成锐二面角的平面角,且DE=AE·cosθ  .由三角形面积公式可得S△BDC=S△ABC·cosθ.

答案:B

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若∠B=60°,O为△ABC的外心,点P在△ABC所在的平面上,
OP
=
OA
+
OB
+
OC
,且
BP
BC
=8,则边AC上的高h的最大值为
2
3
2
3

查看答案和解析>>

科目:高中数学 来源:2010年浙江省嘉兴市高考数学一模试卷(理科)(解析版) 题型:选择题

我们把底面是正三角形,顶点在底面的射影是正三角形中心的三棱锥称为正三棱锥、现有一正三棱锥P-ABC放置在平面上,已知它的底面边长为2,高h,边BC在平面上转动,若某个时刻它在平面上的射影是等腰直角三角形,则h的取值范围是( )

A.(0,]
B.(0,]
C.(0,]∪[,1]
D.(0,]∪(,1)

查看答案和解析>>

同步练习册答案