精英家教网 > 高中数学 > 题目详情
已知抛物线y2=4x与直线y=2x+b相交于A,B两点,|AB|=3
5

(1)求b的值;
(2)设P 是x轴上的一点,当△PAB的面积为39时,求点P的坐标.
分析:(1)直线方程与抛物线方程联立,利用韦达定理,可求|AB|,即可得到结论;
(2)求出P到AB的距离,利用△PAB的面积为39,建立方程,即可求点P的坐标.
解答:解:(1)设A(x1,y1)、B(x2,y2),
由抛物线y2=4x与直线y=2x+b,可得4x2+4(b-1)x+b2=0,
△=16(b-1)2-16b2>0,∴b<
1
2

又由韦达定理有x1+x2=1-b,x1x2=
b2
4

∴|AB|=
1+4
(x1+x2)2-4x1x2
=
5(1-2b)

5(1-2b)
=3
5
,∴b=-4.
(2)设x轴上点P(x,0),P到AB的距离为d,则
d=
|2x-0-4|
5
=
|2x-4|
5

∴S△PBC=
1
2
3
5
|2x-4|
5
=39,
∴|2x-4|=26,
∴x=15或x=-11,
∴P(15,0)或(-11,0).
点评:本题考查直线与抛物线的位置关系,考查弦长的计算,考查三角形面积,考查学生的计算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F,其准线与x轴交于点M,过M作斜率为k的直线与抛物线交于A、B两点,弦AB的中点为P,AB的垂直平分线与x轴交于点E(x0,0).
(1)求k的取值范围;
(2)求证:x0>3;
(3)△PEF能否成为以EF为底的等腰三角形?若能,求此k的值;若不能,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线
y
2
 
=4x
的焦点为F,过点A(4,4)作直线l:x=-1垂线,垂足为M,则∠MAF的平分线所在直线的方程为
x-2y+4=0
x-2y+4=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,焦点为F,顶点为O,点P(m,n)在抛物线上移动,Q是OP的中点,M是FQ的中点.
(1)求点M的轨迹方程.
(2)求
nm+3
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x与直线2x+y-4=0相交于A、B两点,抛物线的焦点为F,那么|
FA
|+|
FB
|
=
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x,其焦点为F,P是抛物线上一点,定点A(6,3),则|PA|+|PF|的最小值是
7
7

查看答案和解析>>

同步练习册答案