精英家教网 > 高中数学 > 题目详情

【题目】已知二次函数满足下列3个条件:①函数的图象过坐标原点; ②函数的对称轴方程为 ③方程有两个相等的实数根.

1)求函数的解析式;

2)令,若函数上的最小值为-3,求实数的值;

3)令,若函数内有零点,求实数的取值范围.

【答案】1;(2;(3.

【解析】

1)由题意可设,再结合求解即可;

2)讨论当时,当时,当时,函数的单调性求最小值即可得解;

3)先由,又函数内有零点,则,再求解即可.

解:(1)由二次函数满足函数的图象过坐标原点,则可设,又函数的对称轴方程为

,又方程有两个相等的实数根,即有两个相等的实数根,则,即,即

2)由(1)得

时,上为增函数,则,解得,不合题意,

时,上为减函数,则,解得,符合题意,

时, ,解得

故实数的值为

3)由(1)得:

由函数内有零点,则方程内有解,

,解得

故实数的取值范围为:.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,则该几何体的体积是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PA⊥底面ABC,∠BAC=90°.点DEN分别为棱PAPCBC的中点,M是线段AD的中点,PAAC=4,AB=2.

(1)求证:MN∥平面BDE

(2)求二面角CEMN的正弦值;

(3)已知点H在棱PA上,且直线NH与直线BE所成角的余弦值为,求线段AH的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】执行如图所示的程序框图,若输出的值为4,则判断框中应填入的条件是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列几个命题:①若方程的两个根异号,则实数;②函数是偶函数,但不是奇函数;③函数 上是减函数,则实数a的取值范围是;④ 方程 的根满足,则m满足的范围,其中不正确的是(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知上的偶函数,当时,.对于结论

1)当时,

2)函数的零点个数可以为

3)若函数在区间上恒为正,则实数的范围是

以上说法正确的序号是______________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[2018·龙岩质检]已知

1)讨论的单调性;

2)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中, 为等边三角形,且平面平面.

(Ⅰ)证明:

(Ⅱ)若棱锥的体积为,求该四棱锥的侧面积.

【答案】(Ⅰ)证明见解析;(Ⅱ) .

【解析】试题分析】(I)的中点为,连接.利用等腰三角形的性质和矩形的性质可证得,由此证得平面,故,故.(II) 可知是棱锥的高,利用体积公式求得,利用勾股定理和等腰三角形的性质求得的值,进而求得面积.

试题解析】

证明:(Ⅰ)取的中点为,连接

为等边三角形,∴.

底面中,可得四边形为矩形,∴

,∴平面

平面,∴.

,所以.

(Ⅱ)由面

平面,所以为棱锥的高,

,知

.

由(Ⅰ)知,∴.

.

,可知平面,∴

因此.

的中点,连结,则

.

所以棱锥的侧面积为.

型】解答
束】
20

【题目】已知圆经过椭圆 的两个焦点和两个顶点,点 是椭圆上的两点,它们在轴两侧,且的平分线在轴上, .

(Ⅰ)求椭圆的方程;

(Ⅱ)证明:直线过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在长方形ABCD中,AB2BC1EDC的中点,F为线段EC上一动点.现将AFD沿AF折起,使平面ABD平面ABC.在平面ABD内过点DDKABK为垂足.设AKt,则t的取值范围是________

查看答案和解析>>

同步练习册答案