精英家教网 > 高中数学 > 题目详情

【题目】若某校研究性学习小组共6人,计划同时参观科普展,该科普展共有甲,乙,丙三个展厅,6人各自随机地确定参观顺序,在每个展厅参观一小时后去其他展厅,所有展厅参观结束后集合返回,设事件A为:在参观的第一小时时间内,甲,乙,丙三个展厅恰好分别有该小组的2个人;事件B为:在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人,则 ).

A. B. C. D.

【答案】A

【解析】

先求事件A包含的基本事件,再求事件AB包含的基本事件,利用公式可得.

由于6人各自随机地确定参观顺序,在参观的第一小时时间内,总的基本事件有个;事件A包含的基本事件有个;在事件A发生的条件下,在参观的第二个小时时间内,该小组在甲展厅人数恰好为2人的基本事件为个,而总的基本事件为,故所求概率为,故选A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数是奇函数,求实数的值;

2)若关于的方程在区间上有解,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,,且EPD中点.

I)求证:平面ABCD

II)求二面角B-AE-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(1)当时,若函数处的切线与函数相切,求实数的值;

(2)当时,记.证明:当时,存在,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是一个奖杯的三视图,试根据奖杯的三视图计算它的表面积和体积(可用计算工具,尺寸如图,单位:cmπ3.14,结果取整数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,已知四边形BCDE为直角梯形,,且ABE的中点沿AD折到位置如图,连结PCPB构成一个四棱锥

求证

平面ABCD

求二面角的大小;

在棱PC上存在点M,满足,使得直线AM与平面PBC所成的角为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线,斜率为的直线交抛物线两点,当直线过点时,以为直径的圆与直线相切.

(1)求抛物线的方程;

(2)与平行的直线交抛物线于两点,若平行线之间的距离为,且的面积是面积的倍,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x人,此次培训的总费用为y元.

(1)求出yx之间的函数关系式;

(2)请你预算:公司此次培训的总费用最多需要多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知四棱锥PABCD的底面ABCD是平行四边形,PA面ABCD,M是AD的中点,N是PC的中点.

(1)求证:MN面PAB;

(2)若平面PMC面PAD,求证:CMAD.

查看答案和解析>>

同步练习册答案