精英家教网 > 高中数学 > 题目详情
6.已知集合A={x∈R|ax2+1=0},若集合A=∅,则a的取值范围是a≥0.

分析 集合A={x∈R|ax2+1=0},集合A=∅,可得a≥0,即可求出a的取值范围.

解答 解:∵集合A={x∈R|ax2+1=0},集合A=∅,
∴a≥0,
故答案为a≥0.

点评 本题考查考查集合的表示,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.4个孩子在黄老师的后院玩球,突然传来一阵打碎玻璃的响声,黄老师跑去察看,发现一扇窗户玻璃被打破了,老师问:“谁打破的?”宝宝说:“是可可打破的.”可可说:“是毛毛打破的.”毛毛说:“可可说谎.”多多说:“我没有打破窗子.”如果只有一个小孩说的是实话,那么打碎玻璃的是(  )
A.宝宝B.可可C.多多D.毛毛

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一元二次不等式x2+bx+c<0的解集为{x|1<x<2},则b+c=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.观察下列式子:
1+$\frac{1}{{2}^{2}}$<$\frac{3}{2}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$<$\frac{5}{3}$,
1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$<$\frac{7}{4}$,

据以上式子可以猜想:1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<1+$\frac{1}{{2}^{2}}$+$\frac{1}{{3}^{2}}$+$\frac{1}{{4}^{2}}$+…+$\frac{1}{{{{2016}^2}}}$<$\frac{4031}{2016}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数$f(x)=2cosxsin({x+\frac{π}{3}})-\sqrt{3}{sin^2}x+sinxcosx$.
(1)求函数f(x)的最小正周期T;
(2)在给出的直角坐标系中,画出函数f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上的图象;
(3)若当$x∈[{\frac{π}{12},\frac{7π}{12}}]$时,f(x)的反函数为f-1(x),求f-1(1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.复数z满足iz=$\frac{2}{1+i}$,则复数z为(  )
A.1+iB.-1-iC.-1+iD.1-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设复数z=$\frac{1}{1-i}+{i^7}$,则|z|=(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{3}}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.以平面直角坐标系的原点为极点,x轴的正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位.已知直线l的极坐标方程为$ρsin(θ+\frac{π}{3})=m$,圆C的参数方程为$\left\{\begin{array}{l}x=2+2cost\\ y=2sint\end{array}$(t为参数).
(1)求直线l的直角坐标方程和圆C的普通方程;
(2)若直线l与圆C有公共点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.lg125+lg8=3.

查看答案和解析>>

同步练习册答案