精英家教网 > 高中数学 > 题目详情

(本题12分)如图,在侧棱锥垂直底面的四棱锥ABCD-A1B1C1D1中,AD∥BC,
AD⊥AB,AB=。AD=2,BC=4,AA1=2,E是DD1的中点,F是平面B1C1E
与直线AA1的交点。
(1)证明:(i)EF∥A1D1
(ii)BA1⊥平面B1C1EF;
(2)求BC1与平面B1C1EF所成的角的正弦值。

(1)见解析;(2) BC与平面所成角的正弦值是.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,正三棱柱中,点的中点.

(Ⅰ)求证: 平面
(Ⅱ)求证:平面.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)如图,四边形是矩形,平面上一点,平面,点分别是的中点.

(Ⅰ)求证:平面
(Ⅱ)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知梯形中,分别是上的点,的中点.沿将梯形翻折,使平面⊥平面 (如图).


(I)当时,求证: ;
(II)若以为顶点的三棱锥的体积记为,求的最大值;
(III)当取得最大值时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)如图所示,在四棱锥P—ABCD中,底面是边长为2的菱形,∠DAB=60°,对角线AC与BD交于点O,PO⊥平面ABCD,PB与平面ABCD所成角为60°.
(1)求四棱锥的体积;
(2)若E是PB的中点,求异面直线DE与PA所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)如图(甲),在直角梯形ABED中,AB//DE,ABBE,ABCD,且BC=CD,AB=2,F、H、G分别为AC ,AD ,DE的中点,现将△ACD沿CD折起,使平面ACD平面CBED,如图(乙).
(1)求证:平面FHG//平面ABE;
(2)记表示三棱锥B-ACE 的体积,求的最大值;
(3)当取得最大值时,求二面角D-AB-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在三棱锥中,是边长为的等边三角形,分别是的中点.

(Ⅰ)求证:∥平面
(Ⅱ)求证:平面⊥平面
(Ⅲ)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分线段PC,且分别交AC、PC于D、E两点,又PB=BC,PA=AB。

(1)求证:PC⊥平面BDE;
(2)若点Q是线段PA上任一点,判断BD、DQ的位置关系,并证明你的结论;
(3)若AB=2,求三棱锥B-CED的体积

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

把一个圆锥截成圆台,已知圆台的上、下底面半径的比是1∶4,母线长10cm.求:圆锥的母长

查看答案和解析>>

同步练习册答案