精英家教网 > 高中数学 > 题目详情

【题目】设甲乙两地相距100海里,船从甲地匀速驶到乙地,已知某船的最大船速是36海里/时:当船速不大于每小时30海里/时,船每小时使用的燃料费用和船速成正比;当船速不小于每小时30海里/时,船每小时使用的燃料费用和船速的平方成正比;当船速为30海里/时,它每小时使用的燃料费用为300元;其余费用(不论船速为多少)都是每小时480元;

1)试把每小时使用的燃料费用P(元)表示成船速v(海里/时)的函数;

2)试把船从甲地行驶到乙地所需要的总费用Y表示成船速v的函数;

3)当船速为每小时多少海里时,船从甲地到乙地所需要的总费用最少?

【答案】(1)(2)(3)当时,Y有最小值为(元)

【解析】

1)分类讨论,当时,设,从而解得;再求当时的解析式即可;

2)分类讨论求总费用的值,从而利用分段函数写出即可;

3)由分段函数讨论以确定函数的单调性,从而由单调性求最小值即可.

解:(1)由题意,当时,设

解得,

时,设

解得,

2)当时,

时,

3)当时,是减函数,

时,

时,

则当,故上是减函数;

上是减函数,

故当时,有最小值为(元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知为等边三角形,为等腰直角三角形,,平面平面ABD,点E与点D在平面ABC的同侧,且.FAD中点,连接EF.

1)求证:平面ABC

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若为单调函数,求a的取值范围;

2)若函数仅一个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的各项均为整数,其前n项和为Sn.规定:若数列{an}满足前r项依次成公差为1的等差数列,从第r﹣1项起往后依次成公比为2的等比数列,则称数列{an}“r关联数列

1)若数列{an}“6关联数列,求数列{an}的通项公式;

2)在(1)的条件下,求出Sn,并证明:对任意n∈N*anSn≥a6S6

3)已知数列{an}“r关联数列,且a1=﹣10,是否存在正整数kmmk),使得a1+a2+…+ak1+ak=a1+a2+…+am1+am?若存在,求出所有的km值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4正方体中,的中点,,点在正方体表面上移动,且满足,则点和满足条件的所有点构成的图形的面积是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,当时,,当时,,若直线与函数的图象恰有11个不同的公共点,则实数的取值范围为____________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,设.

(Ⅰ)试确定t的取值范围,使得函数上为单调函数;

(Ⅱ)求证:

(Ⅲ)求证:对于任意的,总存在,满足,又若方程上有唯一解,请确定t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥PABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠BCD60°,EBC中点,点Q在侧棱PC上.

(Ⅰ)求证:ADPB

(Ⅱ)若QPC中点,求二面角EDQC的余弦值;

(Ⅲ)是否存在Q,使PA∥平面DEQ?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】田忌赛马是《史记》中记载的一个故事,说的是齐国大将军田忌经常与齐国众公子赛马,孙膑发现田忌的马和其他人的马相差并不远,都分为上、中、下三等.于是孙膑给田忌将军献策:比赛即将开始时,他让田忌用下等马对战公子们的上等马,用上等马对战公子们的中等马,用中等马对战公子们的下等马,从而使田忌赢得了许多赌注.假设田忌的各等级马与某公子的各等级马进行一场比赛,田忌获胜的概率如下表所示:

比赛规则规定:一次比赛由三场赛马组成,每场由公子和田忌各出一匹马参赛,结果只有胜和负两种,并且毎一方三场赛马的马的等级各不相同,三场比赛中至少获胜两场的一方为最终胜利者.

1)如果按孙膑的策略比赛一次,求田忌获胜的概率;

2)如果比赛约定,只能同等级马对战,每次比赛赌注1000,即胜利者赢得对方1000,每月比赛一次,求田忌一年赛马获利的数学期望.

查看答案和解析>>

同步练习册答案