精英家教网 > 高中数学 > 题目详情
已知的三个顶点都在抛物线上,且抛物线的焦点满足,若边上的中线所在直线的方程为为常数且).
(1)求的值;
(2)为抛物线的顶点,的面积分别记为,求证:为定值.
(1);(2)详见试题解析.

试题分析:(1)由已知,抛物线的焦点满足,从而知BC边上的中点符合,因此点在直线上,令,可得抛物线的焦点的坐标,由此可求得的值;(2)首先设出的坐标:,由已知,即可得,而,最终即可证得为定值.
试题解析:(1)因为抛物线的焦点满足,取BC边上的中点,则,故点在直线上,令,得,得抛物线的焦点,于是,.                                    5分
(2)记,由知:,     7分
.于是,
.证毕.                                13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的右焦点为,短轴的端点分别为,且.
(1)求椭圆的方程;
(2)过点且斜率为的直线交椭圆于两点,弦的垂直平分线与轴相交于点.设弦的中点为,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆,直线是直线上的线段,且是椭圆上一点,求面积的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

直线l与椭圆+=1(a>b>0)交于A(x1,y1),B(x2,y2)两点,已知m=(ax1,by1),n=(ax2,by2),若m⊥n且椭圆的离心离e=,又椭圆经过点(,1),O为坐标原点.
(1)求椭圆的方程.
(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆:的离心率,原点到过点,的直线的距离是.
(1)求椭圆的方程;
(2)若椭圆上一动点关于直线的对称点为,求 的取值范围;
(3)如果直线交椭圆于不同的两点,且都在以为圆心的圆上,求的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线ly轴上的截距为m,直线l与椭圆相交于AB两个不同点.

(1)求实数m的取值范围;
(2)证明:直线MAMBx轴围成的三角形是等腰三角形.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆的右焦点为,直线轴交于点,若(其中为坐标原点).
(1)求椭圆的方程;
(2)设是椭圆上的任意一点,为圆的任意一条直径(为直径的两个端点),求的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,点是双曲线右支上相异两点,且满足为线段的中点,直线的斜率为
(1)求双曲线的方程;
(2)用表示点的坐标;
(3)若的中垂线交轴于点,直线轴于点,求的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图平面直角坐标系中,椭圆的离心率分别是椭圆的左、右两个顶点,圆的半径为,过点作圆的切线,切点为,在轴的上方交椭圆于点.则       

查看答案和解析>>

同步练习册答案