精英家教网 > 高中数学 > 题目详情

【题目】如图所示,正三角形所在平面与梯形所在平面垂直, 为棱的中点.

(1)求证: 平面

(2)求证: 平面

(3)若直线与平面所成角的正切值为,求二面角的余弦值.

【答案】(1)见解析(2)见解析(3)

【解析】【试题分析】(1)运用线面平行的判定定理进行推证;(2)依据题设运用线面垂直的判定定理进行推证;(3)先建立空间直角坐标系,再运用向量的数量积工具进行求解:

(1)如图,取中点,连接,因为中点,所以 ,所以,所以四边形为平行四边形,所以.

平面 平面,∴平面.

(2)又因为为正三角形,所以

又因为面,面.

所以 .又因为,所以,所以.

(3)

中点,再连接.易证,所以为直线与平面所成的角,即,设,可求得.

为原点,建立如图所示的空间直角坐标系,则

所以

设平面的法向量为,则,令,得

,所以

设面的法向量为,则,令,得

所以,所以

因为二面角为钝角,其余弦值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ex﹣1,g(x)=﹣x2+4x﹣3,若有f(a)=g(b),则b的取值范围为(
A.
B.(2﹣ ,2+
C.[1,3]
D.(1,3)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列1,a1 , a2 , 9是等差数列,数列1,b1 , b2 , b3 , 9是等比数列,则 的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点是平行四边形所在平面外一点, 平面 , .

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数, 是自然对数的底数).

1)当时,求曲线在点处的切线方程;

(2)当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=2,点E、F分别在边AB、DC上,M为AD的中点,且 =0,则△MEF的面积的取值范围为(

A.
B.[1,2]
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设实数满足,若目标函数的最大值为6,则的最小值为( )

A. B. C. D. 0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某车间共有名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.

(Ⅰ) 根据茎叶图计算样本均值;

(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间名工人中有几名优秀工人;

(Ⅲ) 从该车间名工人中,任取2人,求恰有1名优秀工人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是某校高三一次月考5个班级的数学、物理的平均成绩:

班级

1

2

3

4

5

数学(分)

111

113

119

125

127

物理(分)

92

93

96

99

100

(Ⅰ)一般来说,学生的物理成绩与数学成绩具有线性相关关系,根据上表提供的数据,求两个变量 的线性回归方程

(Ⅱ)从以上5个班级中任选两个参加某项活动,设选出的两个班级中数学平均分在115分以上的个数为,求的分布列和数学期望.

附:

查看答案和解析>>

同步练习册答案