精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,曲线C1的参数方程为(为参数),曲线C2的参数方程为(为参数).在以O为极点,x轴的正半轴为极轴的极坐标系中,射线lθα C1C2 各有一个交点.当 α0时,这两个交点间的距离为2,当 α时,这两个交点重合.

(1) 求曲线C1C2的直角坐标方程

(2) 设当 α时,lC1C2的交点分别为A1B1,当 α=-时,lC1C2的交点分别为A2B2,求四边形A1A2B2B1的面积.

【答案】(1)C1C2的普通方程分别为x2y21y21,(2)

【解析】

(1)α0αa,b 值由参数方程与普通方程的互化求解得C1C2的普通方程;(2)令α,得A1B1的横坐标,利用对称性得A1B1关于x轴对称,得四边形A1A2B2B1为等腰梯形,利用面积公式求解即可

由题C1 的普通方程为x2y21C2的普通方程为

α0时,射线lC1C2交点的直角坐标分别为(1,0)(a,0),因为这两点间的距离为2,所以a3.

α时,射线lC1C2交点的直角坐标分别为(0,1)(0b),因为这两点重合,所以b1.

C1C2的普通方程分别为x2y21y21

2)当α时,射线lC1交点A1的横坐标为x,与C2交点B1的横坐标为x′.

α=-时,射线lC1C2的两个交点A2B2分别与A1B1关于x轴对称,因此四边形A1A2B2B1为梯形.

故四边形A1A2B2B1的面积为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区发现某污染源,相关部门对污染情况进行调查研究后,发现一天中污染指数与时刻x(时)的函数关系为,其中a是与气象有关的参数,且.按规定,若每天污染指数不超过2,则环保合格,否则需要整改.如果以每天中的最大值作为当天的污染指数,并记为,那么该地区污染指数的超标情况为________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于函数图象的有下列说法:

①若函数满足,则的一个周期为

②若函数满足,则的图象关于直线对称;

③函数与函数的图象关于直线对称;

④若函数与函数的图象关于原点对称,则

其中正确的个数是(

A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医药开发公司实验室有瓶溶液,其中瓶中有细菌,现需要把含有细菌的溶液检验出来,有如下两种方案:

方案一:逐瓶检验,则需检验次;

方案二:混合检验,将瓶溶液分别取样,混合在一起检验,若检验结果不含有细菌,则瓶溶液全部不含有细菌;若检验结果含有细菌,就要对这瓶溶液再逐瓶检验,此时检验次数总共为.

(1)假设,采用方案一,求恰好检验3次就能确定哪两瓶溶液含有细菌的概率;

(2)现对瓶溶液进行检验,已知每瓶溶液含有细菌的概率均为.

若采用方案一.需检验的总次数为,若采用方案二.需检验的总次数为.

(i)的期望相等.试求关于的函数解析式;

(ii),且采用方案二总次数的期望小于采用方案一总次数的期望.的最大值.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地举办水果观光采摘节,并推出配套旅游项目,统计了4月份100名游客购买水果的情况,得到如图所示的频率分布直方图.

1)若将消费金额不低于80元的游客称为“水果达人”,现用分层抽样的方法从样本的“水果达人”中抽取5人,求这5人中消费金额不低于100元的人数;

2)从(1)中的5人中抽取2人作为幸运客户免费参加配套旅游项目,请列出所有的可能结果,并求这2人中至少有1人购买金额不低于100元的概率;

3)为吸引顾客,该地特推出两种促销方案,

方案一:每满80元可立减8元;

方案二:金额超过50元但又不超过80元的部分打9折,金额超过80元但又不超过100元的部分打8折,金额超过100元的部分打7折.

若水果的价格为11元/千克,某游客要购买10千克,应该选择哪种方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)分别求的值:

(2)讨论的解的个数:

(3)若对任意给定的,都存在唯一的,满足,求实数

的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某大学学生在某天上网的时间,随机对100名男生和100名女生进行了不记名的问卷调查,得到了如下的统计结果:

(1)若该大学共有女生750人,试估计其中上网时间不少于60分钟的人数;

(2)完成联表,并回答能否有90%的把握认为“大学生上网时间与性别有关”.

附:,其中nabcd为样本容量.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为过原点且斜率为1的直线交椭圆两点,四边形的周长与面积分别为8与 .

(Ⅰ)求椭圆的标准方程;

(Ⅱ)设直线交椭圆两点,且求证:到直线的距离为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在中, ,沿翻折到的位置,使平面平面.

(1)求证: 平面

(2)若在线段上有一点满足,且二面角的大小为,求的值.

查看答案和解析>>

同步练习册答案