【题目】过双曲线的右支上的一点P作一直线l与两渐近线交于A、B两点,其中P是的中点;
(1)求双曲线的渐近线方程;
(2)当P坐标为时,求直线l的方程;
(3)求证:是一个定值.
科目:高中数学 来源: 题型:
【题目】已知定义在实数集上的函数,把方程称为函数的特征方程,特征方程的两个实根,称为的特征根.
(1)讨论函数的奇偶性,并说明理由;
(2)求表达式;
(3)把函数,的最大值记作、最小值记作,令,若恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】经过多年的运作,“双十一”抢购活动已经演变成为整个电商行业的大型集体促销盛宴.为迎接2014年“双十一”网购狂欢节,某厂家拟投入适当的广告费,对网上所售产品进行促销.经调查测算,该促销产品在“双十一”的销售量p万件与促销费用x万元满足(其中,a为正常数).已知生产该产品还需投入成本万元(不含促销费用),产品的销售价格定为
元/件,假定厂家的生产能力完全能满足市场的销售需求.
(1)将该产品的利润y万元表示为促销费用x万元的函数;
(2)促销费用投入多少万元时,厂家的利润最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别为,,过点的直线与椭圆交于两点,延长交椭圆于点,的周长为8.
(1)求的离心率及方程;
(2)试问:是否存在定点,使得为定值?若存在,求;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某加油站拟建造如图所示的铁皮储油罐(不计厚度,长度单位为米),其中储油罐的中间为圆柱形,左右两端均为半球形,(为圆柱的高,为球的半径,).假设该储油罐的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为千元,半球形部分每平方米建造费用为千元.设该储油罐的建造费用为千元.
(1) 写出关于的函数表达式,并求该函数的定义域;
(2) 若预算为万元,求所能建造的储油罐中的最大值(精确到),并求此时储油罐的体积(单位: 立方米,精确到立方米).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,对于点、直线,我们称为点到直线的方向距离.
(1)设椭圆上的任意一点到直线,的方向距离分别为、,求的取值范围.
(2)设点、到直线的方向距离分别为、,试问是否存在实数,对任意的都有成立?若存在,求出的值;不存在,说明理由.
(3)已知直线和椭圆,设椭圆的两个焦点,到直线的方向距离分别为、满足,且直线与轴的交点为、与轴的交点为,试比较的长与的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)若动点到定点的距离与到定直线:的距离之比为,求证:动点的轨迹是椭圆;
(2)设(1)中的椭圆短轴的上顶点为,试找出一个以点为直角顶点的等腰直角三角形,并使得、两点也在椭圆上,并求出的面积;
(3)对于椭圆(常数),设椭圆短轴的上顶点为,试问:以点为直角顶点,且、两点也在椭圆上的等腰直角三角形有几个?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设椭圆,定义椭圆C的“相关圆”E为:.若抛物线的焦点与椭圆C的右焦点重合,且椭圆C的短轴长与焦距相等.
(1)求椭圆C及其“相关圆”E的方程;
(2)过“相关圆”E上任意一点P作其切线l,若l 与椭圆交于A,B两点,求证:为定值(为坐标原点);
(3)在(2)的条件下,求面积的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com