精英家教网 > 高中数学 > 题目详情

【题目】设抛物线C:y2=2px(p>0)的焦点为F,点M在C上,|MF|=5,若以MF为直径的圆过点(0,2),则C的方程为(  )
A.y2=4x或y2=8x
B.y2=2x或y2=8x
C.y2=4x或y2=16x
D.y2=2x或y2=16x

【答案】C
【解析】解:∵抛物线C方程为y2=2px(p>0),
∴焦点F坐标为( , 0),可得|OF|=
∵以MF为直径的圆过点(0,2),
∴设A(0,2),可得AF⊥AM,
Rt△AOF中,|AF|=
∴sin∠OAF=
∵根据抛物线的定义,得直线AO切以MF为直径的圆于A点,
∴∠OAF=∠AMF,可得Rt△AMF中,sin∠AMF=
∵|MF|=5,|AF|=
,整理得,解之可得p=2或p=8
因此,抛物线C的方程为y2=4x或y2=16x.
故选:C.
方法二:
∵抛物线C方程为y2=2px(p>0),∴焦点F( , 0),
设M(x,y),由抛物线性质|MF|=x+=5,可得x=5﹣
因为圆心是MF的中点,所以根据中点坐标公式可得,圆心横坐标为
由已知圆半径也为 , 据此可知该圆与y轴相切于点(0,2),故圆心纵坐标为2,则M点纵坐标为4,
即M(5﹣ , 4),代入抛物线方程得p2﹣10p+16=0,所以p=2或p=8.
所以抛物线C的方程为y2=4x或y2=16x.
故答案C.

根据抛物线方程算出|OF|= , 设以MF为直径的圆过点A(0,2),在Rt△AOF中利用勾股定理算出|AF|=.再由直线AO与以MF为直径的圆相切得到∠OAF=∠AMF,Rt△AMF中利用∠AMF的正弦建立关系式,从而得到关于p的方程,解之得到实数p的值,进而得到抛物线C的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】集合A={x|x2﹣3x﹣4<0,x∈Z}用列举法表示为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,圆C的参数方程为(θ是参数),直线l的极坐标方程为(ρ∈R)
(Ⅰ)求C的普通方程与极坐标方程;
(Ⅱ)设直线l与圆C相交于A,B两点,求|AB|的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=ax2﹣2ax+b(a≠0)在闭区间[1,2]上有最大值0,最小值﹣1,则a,b的值为(
A.a=1,b=0
B.a=﹣1,b=﹣1
C.a=1,b=0或a=﹣1,b=﹣1
D.以上答案均不正确

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知c>0,设命题p:函数y=cx为减函数;命题q:当x∈[ , 2]时,函数f(x)=x+ 恒成立,如果p∨q为真命题,p∧q为假命题,求c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且.

)求函数的解析式;

)若对任意,都有,求的取值范围;

)证明函数的图象在图象的下方.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P ABCD中,底面ABCD为平行四边形, PA⊥平面ABCDEPD的中点.

证明:PB平面AEC

AD2 ,求三棱锥的体积

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在五面体ABCDEF中,FA⊥平面ABCD,AD∥BC∥FE,AB⊥AD,M为EC的中点,AF=AB=BC=FE= AD,

(1)求异面直线BF与DE所成的角的大小;
(2)证明平面AMD⊥平面CDE;
(3)求二面角A﹣CD﹣E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x3+ax2+bx+a2(a>0)在x=1处有极值10.
(1)求a、b的值;
(2)求f(x)的单调区间;
(3)求f(x)在[0,4]上的最大值与最小值.

查看答案和解析>>

同步练习册答案