精英家教网 > 高中数学 > 题目详情

【题目】广元市某校高三数学备课组为了更好地制定二轮复习的计划,开展了试卷讲评后效果的调研,从上学期市一诊考试数学试题中选出一些学生易错题,重新进行测试,并认为做这些题不出任何错误的同学为“过关”,出了错误的同学为“不过关”,现随机抽查了年级人,他们的测试成绩的频数分布如下表:

市一诊分数段

人数

5

10

15

13

7

“过关”人数

1

3

8

8

6

1)由以上统计数据完成如下列联表,并判断是否有的把握认为市一诊数学成绩不低于分与测试“过关”有关?说明你的理由;

分数低于分人数

分数不低于分人数

合计

“过关”人数

“不过关”人数

合计

2)根据以上数据估计该校市一诊考试数学成绩的中位数.下面的临界值表供参考:

0.15

0.10

0.05

0.025

2.072

2.706

3.841

5.024

【答案】1)填表见解析;有的把握认为期末数学成绩不低于分与测试“过关”有关,详见解析(2)中位数为

【解析】

1)首先根据频数分布表中的数据填列联表,然后计算出即可;

2)算出每个分数段的频率,然后即可算出中位数.

1)根据题意得列联表如下:

分数低于分人数

分数不低于分人数

合计

“过关”人数

12

14

26

“不过关”人数

18

6

24

合计

30

20

50

所以,.

因此有的把握认为期末数学成绩不低于分与测试“过关”有关.

2)设该市一诊考试数学成绩的中位数为.

市一诊分数段

人数

5

10

15

13

7

频率

0.1

0.2

0.3

0.26

0.14

根据题意有:

解得:.

所以,该校市一诊考试数学成绩的中位数为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】记无穷数列的前n的最大项为,第n项之后的各项的最小项为

1)若数列的通项公式为,写出

2)若数列的通项公式为,判断是否为等差数列,若是,求出公差;若不是,请说明理由;

3)若数列为公差大于零的等差数列,求证:是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)设函数有两个极值点),若恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数对任意的都有,且的最大值为,下列四个结论:①的一个极值点;②若为奇函数,则的最小正周期;③若为偶函数,则上单调递增;④的取值范围是.其中一定正确的结论编号是(

A.①②B.①③C.①②④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】自由购是通过自助结算方式购物的一种形式. 某大型超市为调查顾客使用自由购的情况,随机抽取了100人,统计结果整理如下:

20以下

70以上

使用人数

3

12

17

6

4

2

0

未使用人数

0

0

3

14

36

3

0

(Ⅰ)现随机抽取 1 名顾客,试估计该顾客年龄在且未使用自由购的概率;

(Ⅱ)从被抽取的年龄在使用自由购的顾客中,随机抽取3人进一步了解情况,用表示这3人中年龄在的人数,求随机变量的分布列及数学期望;

(Ⅲ)为鼓励顾客使用自由购,该超市拟对使用自由购的顾客赠送1个环保购物袋.若某日该超市预计有5000人购物,试估计该超市当天至少应准备多少个环保购物袋.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1是由边长为4的正六边形,矩形,组成的一个平面图形,将其沿折起得几何体,使得,且平面平面,如图2.

1)证明:图2中,平面平面

2)设点M为图2中线段上一点,且,若直线平面,求图2中的直线与平面所成角的正弦值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)讨论函数的导函数的单调性;

(2)若函数处取得极大值,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某企业批量生产了一种汽车配件,总数为,配件包装上标有从1的连续自然数序号,为对配件总数进行估计,质检员随机抽取了个配件,序号从小到大依次为,这个序号相当于从区间上随机抽取了个整数,这个整数将区间分为个小区间.由于这个整数是随机抽取的,所以前个区间的平均长度与所有个区间的平均长度近似相等,进而可以得到的估计值.已知,质检员随机抽取的配件序号从小到大依次为831352743104

1)用上面的方法求的估计值.

2)将(1)中的估计值作为这批汽车配件的总数,从中随机抽取100个配件测量其内径(单位:),绘制出频率分布直方图如下:

将这100个配件的内径落入各组的频率视为这个配件内径分布的概率,已知标准配件的内径为200,把这个配件中内径长度最接近标准配件内径长度的800个配件定义为优等品,求优等品配件内径的取值范围(结果保留整数).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F是抛物线Cx24y的焦点,过E0,﹣1)的直线l与抛物线分別交于AB两点.

1)设直线AFBF的斜率分別为k1k2,证明:k1+k20

2)若的面积为,求直线l的方程.

查看答案和解析>>

同步练习册答案