精英家教网 > 高中数学 > 题目详情

【题目】假设某种设备使用的年限x(年)与所支出的维修费用y(元)有以下统计资料:

使用年限x

2

3

4

5

6

维修费用y

2.2

3.8

5.5

6.5

7.0

参考数据:
如果由资料知y对x呈线性相关关系.试求:
(1)
(2)线性回归方程 =bx+a.
(3)估计使用10年时,维修费用是多少?

【答案】
(1)解:由表中数据可得 =(2+3+4+5+6)÷5=4,

=(2.2+3.8+5.5+6.5+7.0)÷5=5


(2)解:由已知可得: =

于是

所求线性回归方程为:


(3)解:由(2)可得,

当x=10时, (万元).

即估计使用10年时,维修费用是12.38万元


【解析】(1)根据表中所给数据,带入平均数公式,易求出 ;(2)根据最小二乘法,结合(1)中结论,及已知中参考数据,代入回归系数求解公式,求出两个回归系数,可得回归方程(3)根据(2)中回归方程,将X=10代入,可得到一个维修费用的预报值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中错误的个数为:( )
①y= 的图象关于(0,0)对称;
②y=x3+x+1的图象关于(0,1)对称;
③y= 的图象关于直线x=0对称;
④y=sinx+cosx的图象关于直线x= 对称.
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆两焦点 ,并且经过点
(1)求椭圆的方程;
(2)若过点A(0,2)的直线l与椭圆交于不同的两点M、N(M在A、N之间),试求△OAM与△OAN面积之比的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,角α(0≤α≤π)的始边为x轴的非负半轴,终边与单位圆的交点为A,将OA绕坐标原点逆时针旋转 至OB,过点B作x轴的垂线,垂足为Q.记线段BQ的长为y,则函数y=f(α)的图象大致是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 =(1,3), =(3,x).
(1)如果 ,求实数x的值;
(2)如果x=﹣1,求向量 的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点A,B分别是椭圆 的长轴的左右端点,点F为椭圆的右焦点,直线PF的方程为: 且PA⊥PF.
(1)求直线AP的方程;
(2)设点M是椭圆长轴AB上一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 与g(x)=cos(2x+φ) ,它们的图象有一个横坐标为 的交点.
(Ⅰ)求φ的值;
(Ⅱ)将f(x)图象上所有点的横坐标变为原来的 倍,得到h(x)的图象,若h(x)的最小正周期为π,求ω的值和h(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知下列命题:( )
①向量 不共线,则向量 与向量 一定不共线
②对任意向量 ,则 恒成立
③在同一平面内,对两两均不共线的向量 ,若给定单位向量 和正数 ,总存在单位向量 和实数 ,使得
则正确的序号为( )
A.①②③
B.①③
C.②③
D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为正整数集的函数f(x)= ,f1(x)=f(x),fn(x)=f[fn﹣1(x)].若fn(21)=1,则n=;若f4(x)=1,则x所有的值构成的集合为

查看答案和解析>>

同步练习册答案