某市居民自来水收费标准如下:每户每月用水不超过4吨时,每吨为1.80元,当用水超过4吨时,超过部分每吨3.00元,某月甲、乙两户共交水费y元,已知甲、乙两户该月用水量分别为5x吨、3x吨.
(1)求y关于x的函数;
(2)若甲、乙两户该月共交水费26.4元,分别求出甲、乙两户该月的用水量和水费.
科目:高中数学 来源: 题型:解答题
如图,ABCD是正方形空地,边长为30m,电源在点P处,点P到边AD、AB距离分别为9m,3m.某广告公司计划在此空地上竖一块长方形液晶广告屏幕MNEF,MN:NE=16:9.线段MN必须过点P,端点M,N分别在边AD,AB上,设AN=x(m),液晶广告屏幕MNEF的面积为S(m2).
(1)用x的代数式表示AM,并写出x的取值范围;
(2)求S关于x的函数关系式.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如果n件产品中任取一件样品是次品的概率为,则认为这批产品中有件次品。某企业的统计资料显示,产品中发生次品的概率p与日产量n满足,有已知每生产一件正品可赢利a元,如果生产一件次品,非但不能赢利,还将损失元().
(1)求该企业日赢利额的最大值;
(2)为保证每天的赢利额不少于日赢利额最大值的50%,试求该企业日产量的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
请你设计一个包装盒,如图所示,是边长为的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒,在上是被切去的等腰直角三角形斜边的两个端点,设.
(1)若广告商要求包装盒侧面积最大,试问应取何值?
(2)若广告商要求包装盒容积最大,试问应取何值?并求出此时包装盒的高与底面边长的比值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知二次函数,,的最小值为.
⑴求函数的解析式;
⑵设,若在上是减函数,求实数的取值范围;
⑶设函数,若此函数在定义域范围内不存在零点,求实数的取值范围.[
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度).设该蓄水池的底面半径为米,高为米,体积为立方米.假设建造成本仅与表面积有关,侧面积的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为元(为圆周率).
(1)将表示成的函数,并求该函数的定义域;
(2)讨论函数的单调性,并确定和为何值时该蓄水池的体积最大.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数f(x)的图象与函数h(x)=x++2的图象关于点A(0,1)对称.
(1)求函数f(x)的解析式;
(2)若g(x)=f(x)+,g(x)在区间(0,2]上的值不小于6,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数常数)满足.
(1)求出的值,并就常数的不同取值讨论函数奇偶性;
(2)若在区间上单调递减,求的最小值;
(3)在(2)的条件下,当取最小值时,证明:恰有一个零点且存在递增的正整数数列,使得成立.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
某公司承建扇环面形状的花坛如图所示,该扇环面花坛是由以点为圆心的两个同心圆弧、弧以及两条线段和围成的封闭图形.花坛设计周长为30米,其中大圆弧所在圆的半径为10米.设小圆弧所在圆的半径为米(),圆心角为弧度.
(1)求关于的函数关系式;
(2)在对花坛的边缘进行装饰时,已知两条线段的装饰费用为4元/米,两条弧线部分的装饰费用为9元/米.设花坛的面积与装饰总费用的比为,当为何值时,取得最大值?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com