精英家教网 > 高中数学 > 题目详情

函数f(x)的定义域为(-∞,1)∪(1,+∞),且f(x+1)为奇函数,当x>1时,f(x)=2x2-12x+16,则直线y=2与函数f(x)图象的所有交点的横坐标之和是


  1. A.
    1
  2. B.
    2
  3. C.
    4
  4. D.
    5
D
分析:f(x+1)为奇函数可得函数f(x)的图象关于(1,0)对称,从而可求x<1时的函数解析式,进而解方程f(x)=2可得.
解答:f(x+1)为奇函数,函数图象关于(0,0)对称
函数f(x)的图象关于(1,0)对称
当x>1时,f(x)=2x2-12x+16
当x<1时,f(x)=-2x2-4x
令2x2-12x+16=2可得x1+x2=6
令-2x2-4x=2可得x3=-1
横坐标之和为5
故选D
点评:本题主要考查了函数的平移、奇函数的对称性,利用对称性求函数在对称区间上的解析式.属于基础知识的综合运用,但难度都不大,只要掌握基本知识、基本方法,就可解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)的定义域为{x|x≠0},且满足对于定义域内任意的x1,x2都有等式f(x1•x2)=f(x1)+f(x2
(Ⅰ)求f(1)的值;
(Ⅱ)判断f(x)的奇偶性并证明;
(Ⅲ)若f(2)=1,且f(x)在(0,+∞)上是增函数,解关于x的不等式f(2x-1)-3≤0.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域是[0,1),则F(x)=f[log 
12
(3-x)
]的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a>0且a≠1,函数f(x)=loga(x+1),g(x)=loga
11-x
,记F(x)=2f(x)+g(x)
(1)求函数F(x)的定义域D及其零点;
(2)试讨论函数F(x)在定义域D上的单调性;
(3)若关于x的方程F(x)-2m2+3m+5=0在区间[0,1)内仅有一解,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为(-1,1),它在定义域内既是奇函数又是增函数,且f(a-3)+f(4-2a)<0,则实数a的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)的定义域为[-1,2],则函数
f(x+2)
x
的定义域为(  )
A、[-1,0)∪(0,2]
B、[-3,0)
C、[1,4]
D、(0,2]

查看答案和解析>>

同步练习册答案