精英家教网 > 高中数学 > 题目详情
12.函数f(x)=log2(1+ax)(a>0且a≠1).
(1)求f(x)的定义域;
(2)求f(x)的值域.

分析 由1+ax>1恒成立,结合对数函数的图象和性质,可得函数的定义域和值域.

解答 解:(1)∵1+ax>1恒成立,
故f(x)的定义域为R;
(2)∵1+ax>1,
∴log2(1+ax)>log21=0,
故函数的值域为(0,+∞)

点评 本题考查的知识点是指数函数的图象和性质,对数函数的图象和性质,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a,第二次朝上一面的点数为b,则函数y=ax2-2bx+1在(-∞,$\frac{1}{2}$]上为减函数的概率是$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=a-$\frac{2}{{2}^{x}+1}$(a∈R)
(1)如果函数f(x)为奇函数,求实数a的值;
(2)证明:对任意的实数a,函数f(x)在(-∞,+∞)上是增函数;
(3)若对任意的实数x,f(x)>0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设函数f(x)=alnx+bx2,若函数f(x)的图象在点(1,1)处的切线与y轴垂直,则实数a+b=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{4}$D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知等比数列{an}的公比q>1,前n项和为Sn,并且满足a2+a3+a4=28,a3+2是a2和a4的等差中项.
(1)求数列{an}的通项公式;
(2)若bn=anlog${\;}_{\frac{1}{2}}$an,Sn=b1+b2+…+bn,求使Sn>254-n•2n+1成立的正整数n的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知p:2x2-3x-2≤0,q:x2-2(a-1)x+a(a-2)≥0.
(1)当a=1时,若p∧q为真.求实数x的取值范围.
(2)若¬q是¬p的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)是定义在R上的奇函数,x≥0时,f(x)=x2+$\sqrt{x+1}$+a,则f(-1)=$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知F1、F2是双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{3}$=1的左右两个焦点,过F2且斜率为1的直线l交椭圆于A、B两点.
(Ⅰ)求直线l的方程及△AF1B的周长;
(Ⅱ)求线段|AB|的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知一次函数的图象经过点(1,0)和(0,1),则此一次函数的解析式为(  )
A.f(x)=-xB.f(x)=x-1C.f(x)=x+1D.f(x)=-x+1

查看答案和解析>>

同步练习册答案