【题目】在四棱锥P﹣ABCD中,底面ABCD是边长为4的正方形,△PAD是一个正三角形,若平面PAD⊥平面ABCD,则该四棱锥的外接球的表面积为_____.
【答案】.
【解析】
过P作交AD于F,取BC的中点G,连接PG,FG,在PF的三等分点H(PH=2HF),取GF的中点E,在平面PFG过E,F分别作GF,PF的垂线,交于点O,可证O为四棱锥的外接球的球心,利用直角三角形可求半径,即得解.
过P作交AD于F,取BC的中点G,连接PG,FG,在PF的三等分点H(PH=2HF),取GF的中点E,在平面PFG过E,F分别作GF,PF的垂线,交于点O
因为为等边三角形,AF=FD,所以,
因为平面PAD⊥平面ABCD,平面PAD 平面ABCD=AD,平面PAD
所以PF⊥平面ABCD,平面ABCD,故PF⊥GF
又四边形ABCD为正方形,G,F为BC,AD的中点,故FG//CD,故AD⊥GF
因为平面PAD
在直角三角形PGF中,平面ABCD
同理OH⊥平面PAD
因为E是正方形ABCD的中心,故球心在直线OE上,
因H是的中心,故球心在直线OH上,故O为球心,OP为球的半径
在直角三角形PGF中,
故
所以球的表面积为:
故答案为:
科目:高中数学 来源: 题型:
【题目】某互联网公司为了确定下一季度的前期广告投入计划,收集了近个月广告投入量(单位:万元)和收益(单位:万元)的数据如下表:
月份 | ||||||
广告投入量 | ||||||
收益 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计量的值:
(Ⅰ)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?并说明理由;
(Ⅱ)残差绝对值大于的数据被认为是异常数据,需要剔除:
(ⅰ)剔除异常数据后求出(Ⅰ)中所选模型的回归方程;
(ⅱ)若广告投入量时,该模型收益的预报值是多少?
附:对于一组数据,,……,,其回归直线的斜率和截距的最小二乘估计分别为:
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校为了了解高一新生是否愿意参加军训,随机调查了80名新生,得到如下2×2列联表
愿意 | 不愿意 | 合计 | |
男 | x | 5 | M |
女 | y | z | 40 |
合计 | N | 25 | 80 |
(1)写出表中x,y,z,M,N的值,并判断是否有99.9%的把握认为愿意参加军训与性别有关;
(2)在被调查的不愿意参加军训的学生中,随机抽出3人,记这3人中男生的人数为ξ,求ξ的分布列和数学期望.
参考公式:
附:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 |
k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=(x﹣1)ex+ax2(a∈R).
(1)若a=e,求函数f(x)在点(1,f(1))处的切线方程;
(2)讨论函数f(x)的单调性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】红铃虫是棉花的主要害虫之一,能对农作物造成严重伤害,每只红铃虫的平均产卵数y和平均温度x有关,现收集了以往某地的7组数据,得到下面的散点图及一些统计量的值.(表中)
平均温度 | 21 | 23 | 25 | 27 | 29 | 32 | 35 | ||
平均产卵数/个 | 7 | 11 | 21 | 24 | 66 | 115 | 325 | ||
27.429 | 81.286 | 3.612 | 40.182 | 147.714 | |||||
(1)根据散点图判断,与(其中自然对数的底数)哪一个更适宜作为平均产卵数y关于平均温度x的回归方程类型?(给出判断即可,不必说明理由)并由判断结果及表中数据,求出y关于x的回归方程.(计算结果精确到小数点后第三位)
(2)根据以往统计,该地每年平均温度达到28℃以上时红铃虫会造成严重伤害,需要人工防治,其他情况均不需要人工防治记该地每年平均温度达到28℃以上的概率为.
①记该地今后5年中,恰好需要3次人工防治的概率为,求的最大值,并求出相应的概率p.
②当取最大值时,记该地今后5年中,需要人工防治的次数为X,求X的数学期望和方差.
附:线性回归方程系数公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】微信运动是由腾讯开发的一个类似计步数据库的公众账号,很多手机用户加入微信运动后,为了让自己的步数能领先于朋友,运动的积极性明显增强.微信运动公众号为了解用户的一些情况,在微信运动用户中随机抽取了100名用户,统计了他们某一天的步数,数据整理如下:
万步 | |||||||
人 | 5 | 20 | 50 | 18 | 3 | 3 | 1 |
(Ⅰ)根据表中数据,在如图所示的坐标平面中作出其频率分布直方图,并在纵轴上标明各小长方形的高;
(Ⅱ)若视频率分布为概率分布,在微信运动用户中随机抽取3人,求至少2人步数多于1.2万步的概率;
(Ⅲ)若视频率分布为概率分布,在微信运动用户中随机抽取2人,其中每日走路不超过0.8万步的有人,超过1.2万步的有人,设,求的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,直线与椭圆的两交点间距离为.
(1)求椭圆的方程;
(2)如图,设是椭圆上的一动点,由原点向圆引两条切线,分别交椭圆于点,若直线的斜率均存在,并分别记为,求证:为定值.
(3)在(2)的条件下,试问是否为定值?若是,求出该值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】坐标系与参数方程:在平面直角坐标系中,以原点为极点,轴的非负半轴为极轴建立极坐标系,已知点的极坐标为,直线的极坐标方程为,且点在直线上
(Ⅰ)求的值和直线的直角坐标方程及的参数方程;
(Ⅱ)已知曲线的参数方程为,(为参数),直线与交于两点,求的值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了宣传今年10月在某市举行的“第十届中国艺术节”,“十艺节”筹委会举办了“十艺节”知识有奖问答活动,随机对市民15~65岁的人群抽样人,回答问题统计结果如下图表所示:
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的频率 | 频率分布直方图 |
第1组 | 5 | 0.5 | ||
第2组 | 0.9 | |||
第3组 | 27 | |||
第4组 | 9 | 0.36 | ||
第5组 | 3 | 0.2 |
(1)分别求出的值;
(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,“十艺节”筹委会决定在所抽取的6人中随机抽取2人颁发幸运奖,求所抽取的人中第2组至少有1人获得幸运奖的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com