精英家教网 > 高中数学 > 题目详情

设数列{an}的通项an=n2+λn+1,已知对任意n∈N*,都有an+1>an,则实数λ的取值范围是


  1. A.
    λ>-2
  2. B.
    λ≥2
  3. C.
    λ>-3
  4. D.
    λ≥-3
C
分析:由{an}是递增数列,得到an+1>an,再由“an=n2+λn+1恒成立”转化为“λ>-2n-1对于n∈N*恒成立”求解.
解答:∵an=n2+λn+1,
∴an+1=(n+1)2+λ(n+1)+1,
∵an+1>an,对an=n2+λn+1恒成立
即(n+1)2+λ(n+1)+1>n2+λn+1,
∴λ>-2n-1对于n∈N*恒成立.
而-2n-1在n=1时取得最大值-3,
∴λ>-3,
故选C.
点评:本题考查的知识点是数列的函数特性,二次函数的性质,其中根据已知条件将问题转化为一个不等式恒成立问题是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设数列{an}的通项是关于x的不等式x2-x<(2n-1)x(n∈N′)的解集中整数的个数.
(1)求an并且证明{an}是等差数列;
(2)设m、k、p∈N*,m+p=2k,求证:
1
Sm
+
1
Sp
2
Sk

(3)对于(2)中的命题,对一般的各项均为正数的等差数列还成立吗?如果成立,请证明你的结论,如果不成立,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式为 an=kn-1.已知a1+a2+a3=7,且a1+3,3a2,a3+4构成等差数列.
(1)求k的值;
(2)令bn=log2a3n+1,(n=1,2,…,),求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式an=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
2n
,那么an+1-an等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项an=n2+λn+1,已知对任意n∈N*,都有an+1>an,则实数λ的取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的通项公式an=f(n)是一个函数,则它的定义域是(  )

查看答案和解析>>

同步练习册答案