【题目】已知如图1所示,在边长为12的正方形,中,,且,分别交于点,将该正方形沿,折叠,使得与重合,构成如图2 所示的三棱柱,在该三棱柱底边上有一点,满足; 请在图2 中解决下列问题:
(I)求证:当时,//平面;
(Ⅱ)若直线与平面所成角的正弦值为,求的值.
科目:高中数学 来源: 题型:
【题目】如图,在空间几何体中,平面平面,与都是边长为2的等边三角形,,点在平面上的射影在的平分线上,已知和平面所成角为.
(1)求证:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过抛物线的焦点,斜率为的直线交抛物线于 两点,且.
(1)求该抛物线的方程;
(2)过点任意作互相垂直的两条直线,分别交曲线于点和.设线段的中点分别为,求证:直线恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】甲、乙、丙三人去某地务工,其工作受天气影响,雨天不能出工,晴天才能出工.其计酬方式有两种,方式一:雨天没收入,晴天出工每天元;方式而:雨天每天元,晴天出工每天元;三人要选择其中一种计酬方式,并打算在下个月(天)内的晴天都出工,为此三人作了一些调查,甲以去年此月的下雨天数(天)为依据作出选择;乙和丙在分析了当地近年此月的下雨天数()的频数分布表(见下表)后,乙以频率最大的值为依据作出选择,丙以的平均值为依据作出选择.
8 | 9 | 10 | 11 | 12 | 13 | |
频数 | 3 | 1 | 2 | 0 | 2 | 1 |
(Ⅰ)试判断甲、乙、丙选择的计酬方式,并说明理由;
(Ⅱ)根据统计范围的大小,你觉得三人中谁的依据更有指导意义?
(Ⅲ)以频率作为概率,求未来三年中恰有两年,此月下雨不超过天的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合.对于的一个子集,若存在不大于的正整数,使得对于中的任意一对元素,都有,则称具有性质.
(Ⅰ)当时,试判断集合和是否具有性质?并说明理由.
(Ⅱ)若时,
①若集合具有性质,那么集合是否一定具有性质?并说明理由;
②若集合具有性质,求集合中元素个数的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com