精英家教网 > 高中数学 > 题目详情
已知椭圆的离心率与双曲线的离心率互为倒数,直线与以原点为圆心,以椭圆的短半轴长为半径的圆相切.
(1)求椭圆的方程;
(2)设椭圆的左焦点为,右焦点为,直线过点且垂直于椭圆的长轴,动直线垂直于点,线段垂直平分线交于点,求点的轨迹的方程;
(3)设第(2)问中的轴交于点,不同的两点上,且满足,求的取值范围.
(1);(2)(3)

试题分析:(1)双曲线的离心率为,所以椭圆的离心率为。根据题意原点到直线的距离为,又因为可解得。(2)由题意知即点到直线,和到点的距离相等,根据椭圆的定义可知点的轨迹是以为焦点以直线为准线的抛物线。(3)由的方程为,根据得出的关系,用两点间距离求,再用配方法求最值。
试题解析:解(1)易知:双曲线的离心率为
 ,                             1分
又由题意知:,                          2分
椭圆的方程为.                                   3分
(2) 
动点到定直线的距离等于它到定点的距离       5分
动点的轨迹是以为准线,为焦点的抛物线,              6分
的轨迹的方程为.                                7分
(3)由(2)知:,设
,                      8分

,                  9分
,左式可化简为:,               10分

当且仅当,即时取等号,                       11分

,即时,,                  13分
的取值范围是.                                14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,设椭圆的离心率,顶点的距离为,为坐标原点.

(1)求椭圆的方程;
(2)过点作两条互相垂直的射线,与椭圆分别交于两点.
(ⅰ)试判断点到直线的距离是否为定值.若是请求出这个定值,若不是请说明理由;
(ⅱ)求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过椭圆=1上一点M作圆x2+y2=2的两条切线,点A,B为切点.过A,B的直线l与x轴、y轴分别交于P,Q两点,则△POQ的面积的最小值为(  )
A.B.C.1D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C=1(ab>0)上任一点P到两个焦点的距离的和为2P与椭圆长轴两顶点连线的斜率之积为-.设直线l过椭圆C的右焦点F,交椭圆C于两点A(x1y1),B(x2y2).
(1)若 (O为坐标原点),求|y1y2|的值;
(2)当直线l与两坐标轴都不垂直时,在x轴上是否总存在点Q,使得直线QAQB的倾斜角互为补角?若存在,求出点Q坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线相交,则过点与椭圆的位置关系为(     )
A.点在椭圆B.点在椭圆
C.点在椭圆D.以上三种均有可能

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆=1上任一点P,由点Px轴作垂线PQ,垂足为Q,设点MPQ上,且=2,点M的轨迹为C.
(1)求曲线C的方程;
(2)过点D(0,-2)作直线l与曲线C交于AB两点,设N是过点且平行于x轴的直线上一动点,且满足 (O为原点),且四边形OANB为矩形,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

P是椭圆=1上的任意一点,F1、F2是它的两个焦点,O为坐标原点,有一动点Q满足,则动点Q的轨迹方程是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

直线过椭圆的左焦点和一个顶点,则椭圆的方程为        

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知椭圆的中心在原点,一个焦点与抛物线的焦点重合,一个顶点的坐标为,则此椭圆方程为         

查看答案和解析>>

同步练习册答案