精英家教网 > 高中数学 > 题目详情

已知向量abcd及实数x、y,且|a|=|b|=1,ca+(x2-3)bd=-ya+xb,若abcd,且|c|≤

(1)求y关于x的函数关系y=f(x)及定义域;

(2)求函数f(x)的单调区间.

答案:
解析:

  (1)∵ab,∴a·b=0.ca+(x2-3)b

  ∴|c|2c·c=|a|2+2(x2-3)a·b+(x2-3)2|b|2

  =x4-6x2+10.

  ∵|c|2≤10,∴x4-6x2+10≤10.

  ∴≤x≤.又∵cd,∴c·d=0.

  ∴c·d=-y|a|2+(-x2y+x+3y)a·b+x(x2-3)|b|2=0,

  ∴-y+x3-3x=0,∴y=f(x)=x3-3x,其定义域为[].

  对(2)问,若作出函数y=x3-3x的图象来确定其单调区间,既复杂又易错.本节就学习一种求函数单调性的简便方法.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

有下列五个命题:
①“若x+y=0,则x,y互为相反数”的逆命题;
②在平面内,F1、F2是定点,|F1F2|=6,动点M满足|MF1|-|MF2|=4|,则点M的轨迹是双曲线.
③“在△ABC中,“∠B=60°”是“∠A,∠B,∠C三个角成等差数列”的充要条件.
④“若-3<m<5则方程
x2
5-m
+
y2
m+3
=1
是椭圆”.
⑤已知向量
a
b
c
是空间的一个基底,则向量
a
+
b
a
-
b
c
也是空间的一个基底.
其中真命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足:|
a
|=1,|
b
|=2,
c
=
a
+
b
,且
c
a
,则
a
b
的夹角大小是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足
a
+
b
+
c
=
0
,且
a
b
的夹角为135°,
b
c
的夹角为120°,|
c
|=2
,则|
b
|
=
1+
3
1+
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
b
c
满足
a
+
b
+
c
=
0
,|
c
|=2
3
c
a
-
b
所成的角为120°,则当t∈R时,|t
a
+(1-t)
b
|
的取值范围是
[
3
2
,+∞)
[
3
2
,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•黑龙江二模)已知向量
a
b
c
满足:|
a
|=1,|
b
|=
2
b
a
上的投影为
1
2
,(
a
-
c
)(
b
-
c
)=0,则|
c
|的最大值为
1+
2
2
1+
2
2

查看答案和解析>>

同步练习册答案