(本题满分12分)
已知函数
(1)若函数存在单调递减区间,求a的取值范围;
(2)当a>0时,试讨论这两个函数图象的交点个数.
(1)a>1
(2)有且仅有两个交点
(1)
若使存在单调递减区间,则上有解.……1分
而当
问题转化为上有解,故a大于函数上的最小值.
………………3分
又上的最小值为-1,所以a>1.……4分
(2)令
函数的交点个数即为函数的零点的个数.……5分
令解得
随着x的变化,的变化情况如下表:
- | 0 | + | |
单调递减 | 极(最)小值2+lna | 单调递增 |
…………7分
①当恒大于0,函数无零点.……8分
②当由上表,函数有且仅有一个零点.
……9分
③显然
内单调递减,
所以内有且仅有一个零点 …………10分
当
由指数函数与幂函数增长速度的快慢,知存在
使得
从而
因而
又内单调递增,上的图象是连续不断的曲线,
所以内有且仅有一个零点. …………11分
因此,有且仅有两个零点.
综上,的图象无交点;当的图象有且仅有一个交点;的图像有且仅有两个交点.……12分
科目:高中数学 来源: 题型:
π | 2 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年上海市金山区高三上学期期末考试数学试卷(解析版) 题型:解答题
(本题满分12分,第1小题6分,第2小题6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2012-2013学年安徽省高三10月月考理科数学试卷(解析版) 题型:解答题
(本题满分12分)
设函数(,为常数),且方程有两个实根为.
(1)求的解析式;
(2)证明:曲线的图像是一个中心对称图形,并求其对称中心.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年重庆市高三第二次月考文科数学 题型:解答题
(本题满分12分,(Ⅰ)小问4分,(Ⅱ)小问6分,(Ⅲ)小问2分.)
如图所示,直二面角中,四边形是边长为的正方形,,为上的点,且⊥平面
(Ⅰ)求证:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求点到平面的距离.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com