精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆),点为椭圆短轴的上端点,为椭圆上异于点的任一点,若点到点距离的最大值仅在点为短轴的另一端点时取到,则称此椭圆为“圆椭圆”,已知.

1)若,判断椭圆是否为“圆椭圆”;

2)若椭圆是“圆椭圆”,求的取值范围;

3)若椭圆是“圆椭圆”,且取最大值,关于原点的对称点,也异于点,直线分别与轴交于两点,试问以线段为直径的圆是否过定点?证明你的结论.

【答案】1)是;(2;(3)是,证明见解析.

【解析】

1)直接判断即可,

2)由(1)的方法判断,可得y=﹣2时,函数值达到最大,分别讨论二次项系数的正负,是否满足条件得出a的取值范围;

3)设参数方程满足以MN为直径的圆过原点,使数量积为零得出定点(02).

1)由题意得椭圆方程:1,所以A02),

Pxy)则|PA|2x2++y2251+y22y24y+9y[22]

二次函数开口向下,对称轴y=﹣8y[22]上函数单调递减,

所以y=﹣2时,函数值最大,此时P为椭圆的短轴的另一个端点,

∴椭圆是圆椭圆

2)由(1)的方法:椭圆方程:1A02)设Pxy),则|PA|2x2+y22a21+y22=(1y24y+4+a2y[22],由题意得,

当且仅当y=﹣2时,函数值达到最大,

讨论:①当开口向上时,满足:2a2(与矛盾,舍);

②当开口向下时,满足2a≤2

综上a的范围:(22]

3a2,椭圆方程:1,由题意:设P2cosθsinθ),θ[02π],且,则Q(﹣2cosθ,﹣sinθ),则直线APyx+2M0

则直线AQy2N0),

MN为直径的圆过定点C由对称性知Cy轴上,∴设C0n)则,且0

,n),∴,

所以得定点(02).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若存在常数 kkN * , k≥2)、dt d , tR),使得无穷数列 {a n }满足a n +1,则称数列{an }段差比数列,其中常数 kdt 分别叫做段长、段差、段比.设数列 {bn }段差比数列

1)已知 {bn }的首项、段长、段差、段比分别为1 2 d t .若 {bn }是等比数列,求 d t 的值;

2)已知 {bn }的首项、段长、段差、段比分别为13 3 1,其前 3n 项和为 S3n .若不等式 S3nλ 3n1 n N *恒成立,求实数 λ 的取值范围;

3)是否存在首项为 b,段差为 dd ≠ 0 )的段差比数列” {bn },对任意正整数 n 都有 bn+6 = bn ,若存在, 写出所有满足条件的 {bn }的段长 k 和段比 t 组成的有序数组 (k, t );若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,将曲线为参数)上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

1)求曲线的普通方程和直线的直角坐标方程;

2)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数,当时,恒成立,则的最大值是_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数字不重复,且个位数字与千位数字之差的绝对值等于2的四位数的个数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,平面.

(Ⅰ)求证:平面

(Ⅱ)求直线与平面所成角的正弦值;

(Ⅲ)若二面角的余弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,过直线上第一象限内的一动点作圆的两条切线,切点分别为,两点的直线与坐标轴分别交于两点,则面积的最小值为(

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆ab0)长轴的两顶点为AB,左右焦点分别为F1F2,焦距为2ca=2c,过F1且垂直于x轴的直线被椭圆C截得的线段长为3

1)求椭圆C的方程;

2)在双曲线 上取点Q(异于顶点),直线OQ与椭圆C交于点P,若直线APBPAQBQ的斜率分别为k1k2k3k4,试证明:k1+k2+k3+k4为定值;

3)在椭圆C外的抛物线Ky2=4x上取一点E,若EF1EF2的斜率分别为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且处的切线方程为

1)求的值;

2)设,若对任意的,求实数的取值范围.

查看答案和解析>>

同步练习册答案